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Abstract—Integrating renewable energy sources into power
systems is crucial to lower carbon emissions, yet the resulting
uncertainty presents challenges to network reliability. In the
era of digital energy, big data models help reduce uncertainty
by identifying data patterns for accurate predictions. Yet, the
efficacy of data-driven models is constrained by the scarcity
of high-quality training data, underscoring the significance of
identifying and selecting datasets of superior quality. This paper
proposes a novel data valuation framework based on deep
reinforcement learning for the analysis and decomposition of
uncertainty in renewable energy datasets. Our framework merges
meteorological and power uncertainty through predictive tasks,
training a neural network to uncover the intrinsic relation-
ships between data features and their value via a sampling-
feedback mechanism. By incorporating policy gradient and other
optimization techniques, we enhance the algorithm’s stability
and efficiency, supplemented by comparative experiments for
validation. We tested our valuation approach using 2017-2018
aggregate wind related data from Yunnan province for power
forecasting. The results demonstrate that our proposed data value
approach effectively enhances the quality of the dataset, leading
to a proportional improvement of 7.69% in prediction accuracy.

Index Terms—Renewable uncertainty, data valuation, data
quality, reinforcement learning, policy gradient, wind power
forecasting, meteorological feature.

I. INTRODUCTION

Renewable energy, as a clean and sustainable energy source
utilized in power systems, plays a vital role in significantly
reducing carbon emissions [1], [2]. Due to the deviations
of natural climatic conditions, the uncertainty of renewable
energy poses challenges to the safety and reliability of power
system operation when it is integrated into power systems [3].
To address it, the integration of digital technologies optimizes
the efficiency and life cycle of renewable energy usage through
data-driven and knowledge-based analysis methods, providing
foundational support in mitigating the uncertainties through
prediction and modeling [4], [S]. However, the practical ap-
plication faces challenges due to the scarcity of high-quality
training data, which not only escalates the expenses associated
with data storage and processing but also undermines the
performance of models [6]. In the presence of low-quality data,
these models struggle to discern relevant numerical patterns,
leading to the acquisition of complex and irrelevant rules
that limit their effectiveness [7]. Hence, it becomes crucial
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to identify and select data sets of higher quality to ensure
accurate forecasting and minimize the uncertainty associated
with renewable energy.

The uncertainty of renewable resources corresponds to the
ambiguity of numerical patterns within power data sets, as
well as their inherent unpredictability [8]. Therefore, learning
to select the subset of high-quality data from the redundant
data set is, in essence, a method of deconstructing renewable
uncertainty. It involves comprehending the underlying causes
of uncertainty within the data set through data-driven knowl-
edge, uncovering potential numerical patterns based on this
understanding, and ultimately providing valuable guidance for
networks scheduling.

Building upon this foundation, proposing data-based se-
lection strategies to enhance presence of high-quality data
becomes highly constructive for power system. The con-
temporary research of data quality valuation encompasses
three primary categories. The first category employs non-
supervisory indicators as a basis for defining data quality.
In the traditional field of data science, scholars employ a
multidimensional framework to assess the value of a dataset,
encompassing key metrics such as Completeness, Accuracy,
Timeliness, Consistency, and other relevant dimensions [9].
By examining these dimensions collectively, researchers gain
a nuanced understanding of the dataset’s reliability, relevance,
and effectiveness across a spectrum of criteria. In big data
energy, some scholars utilize Shannon entropy and the non-
noise ratio as metrics to assess the quality of photovoltaic-
related data [10]. They have discovered an exponential rela-
tionship between the quality of the data and the accuracy of
predictions. The second category centers around the design
of data markets, utilizing transactions as a reflection of the
value of the data. Scholars emphasize the contribution of
data in reducing uncertainty two-settlement market system
that incorporate load demand to define the value of data in
energy transactions [11]. Other scholars adopting existing auc-
tion mechanism to renewable energy forecasting data market
[12]. In this framework, data’s capacity for generating more
accurate predictions contributes to higher revenue, particularly
through collaborative sharing, elucidating the rationale for
the data’s value. However, these two type of methods focus
on identifying and estimating the quality of the datasets but
do not fundamentally deconstruct and analyze the inherent
patterns of uncertainty within them. The former underscores
the correlation of characteristics at the statistical level of the
datasets in influencing prediction accuracy, without initiating
the analysis inside dataset from the specific characteristics
of renewable energy. In contrast, the latter treats uncertainty
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as an economic factor within the market but not emphasize

its relation to the distributional characteristics inherent in the

dataset specific to renewable energy.

The third category places a spotlight on the identification of
noisy data, particularly prevalent in the realm of computational
science. Scholars have applied the concept of utility allocation
from the cooperative games theory to assign values to data,
which has been proven to be highly effective in diagnosing
mislabeled samples [13]. To mitigate the computational cost
of algorithms in large samples and complex models, scholars
have embraced the concept of meta-learning, deriving the
value of data from the output of deep neural networks [14].
However, none of these algorithms can handle the uncertainty
inherent in renewable energy sources, specifically, the data
structures originating from the continuous time dimension,
challenging the efficiency of the valuation framework.

In this paper, we propose a novel data valuation framework
based on deep reinforcement learning to achieve data dimen-
sionality reduction of renewable uncertainty. We effectively
integrate meteorological uncertainty and power uncertainty
through the design of forecasting tasks. We introduce a neural
network that learns the value patterns underlying the entire
data set through continuous exploration and awareness of
the distribution of high-value data sets, finally guides us to
distinguish high-quality data.

The major contribution of this paper are as follows:

1) We propose a theoretical framework based on deep re-
inforcement learning that utilizes deconstructive analysis
of uncertainty scenarios. Utilizing the sampling-feedback
training mechanism, the framework progressively mines the
most valuable segments of the original data set. Addition-
ally, as a significant factor, we incorporate uncertainty in
meteorological characteristics into the quality assessment
of renewable energy data, thereby enhancing the com-
prehensiveness and instructiveness of our deconstructive
analysis and numerical results.

2) We utilize the policy gradient as the foundational algorithm
for implementing the framework and incorporate multi-
level optimization techniques to address the instability of
real data performance. This approach ensures a more stable
and secure screening of the optimal high-quality data set.

3) The comparative experimental results demonstrate that our
algorithm, along with the proposed improvements, signif-
icantly enhances the stability of data value computation.
The effectiveness of our data valuation algorithm has been
confirmed in the scenario of renewable energy forecasting,
as the extraction of higher-quality data significantly reduces
uncertainty and demonstrates more versatility.

II. METEOROLOGY-AIDED RENEWABLE FORECASTING
A. Selection of Meteorological Features

To address the renewable energy prediction problem, we
meticulously considered the nature of the time series and
formulated a continuous data pattern that incorporates meteo-
rological features and power features using a sliced representa-
tion, and use it in the prediction of subsequent power. In our
approach, we consider multidimensional Numerical Weather
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Fig. 1: The framework of deconstruct the uncertainty from
power and NWPs

Data

Prediction (NWP) as valuable features that can be acquired
promptly and utilized as a reliable predictor. We extract both
daily and hourly data, with the specific metrics outlined in
Table 1. It considered the various meteorological dimensions
that can impact wind power generation, representing the
aspects represented by the features mentioned in Fig. 1 as
well. It’s worth noting that “PAR” is an abbreviation for
Photosynthetically Active Radiation.

TABLE I: Meteorological Data Utilization with Various
Features

Meteorological Feature Hourly D
Temperature at 2 Meters V4

<

Temperature at 2 Meters Maximum
Temperature at 2 Meters Minimum
Specific Humidity at 2 Meters
Relative Humidity at 2 Meters

LU B

Surface Pressure
Wind Speed at 10 Meters
Wind Direction at 10 Meters
Precipitation
Clear Sky Surface PAR
All Sky Surface PAR

S R UL N N
<

Indeed, meteorological features are typically obtained from
meteorological stations, offering data at the county level. How-
ever, when our forecasts target provincial wind power output, it
necessitates the extraction of features from all meteorological
stations within a specific geographic area. In order to establish
a basis for the average meteorological features of the entire
province, we first perform clustering of the meteorological
features at the county level, and followed by arithmetic av-
eraging. We integrate all the meteorological features of each
county into a one-dimensional vector, and k-means clustering
algorithm is employed to identify featured counties. Given a
set of meteorological vectors (X1, X2, . . ., X5, ), where n for the
number of county-level meteorological features in the province
and each vector is a d-dimensional daily and hourly features,
k-means clustering aims to partition the n vectors into sets
S ={51,85,...,Sk}. Formally, the objective is to find:

k
argsminz > Ik — il (1)

i=1 x€S;
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where p; is the mean of vectors in .S;, as follow:

i = ﬁ 3 x @)
" xes;

After obtaining the clustering centers, our process involves
selecting counties with the closest Euclidean distance to the
feature vectors as representative counties. Subsequently, we
compute the average meteorological feature values of these k
counties. These averaged values then function as the meteo-
rological feature inputs for the entire province.

B. Design of Forecasting Tasks

Our forecasting model has been specifically designed to
effectively incorporate both the hourly and day-level meteoro-
logical data. In our forecasting model, we specifically utilize
the daily NWPs and the previous 48 hours of power data as
fixed inputs to predict the power generation for the next 24
hours. Each hourly NWPs is then employed to independently
forecast the corresponding 24 hours of power data for the day,
as shown in Fig. 2. This methodology allows us to harness
the temporal relationship between weather patterns and power
generation. Additionally, it enables the seamless integration of
weather uncertainty into power uncertainty, ensuring a com-
prehensive and reliable assessment of the overall uncertainty.

Subsequent
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Fig. 2: The Design of Renewable Power Prediction
incorporate NWPs

We have selected Mean Absolute Percentage Error (MAPE)
as the metric to accurately measure the accuracy of our predic-
tion model. However, due to the fluctuation and instability of
wind power and the proportional calculation in MAPE, we
aim to mitigate the impact of small perturbations in cases
of low generation on our overall judgment of the prediction.
Therefore, we employ an adjusted Mean Absolute Percentage
Error (MAPE) as follows:

24 N

max (y’i,t7 ey)

3)

100%
MAPE = — Z
i=1 t=1
where y; , means real wind power generation on day ¢ hour
t and ¢); ; represent the predicted value. The ¢, is the lower
bound that count in the metric, which is generally chose a
relatively small value.

C. Light Gradient Boosting Machine

To enhance the fitting of wind power time series and incor-
porate the influence of multi-scale meteorological features in
our forecast, we have employed an improved gradient boosting

tree called Light Gradient Boosting Machine (LightGBM) as
our forecasting model [15]. It allows us to capture the intricate
relationships and dependencies within the multidimensional
data, leading to more precise wind power predictions.
LightGBM can be seen as an enhanced algorithm compared
to Gradient Boosting Decision Tree, offering substantial im-
provements in terms of training speed and memory consump-
tion. Assuming that the predicted value from features vector
x; can be written as §; = Zle fr (x;), where each f, is a
regression tree. The objective for fj, to minimize is as follows:

£O =30 (y g™+ ) Q) @
i=1

where y}’“‘” represent the prediction value under the previ-

ous k — 1 regression trees, and the metric {) penalizes the
complexity of the tree model [16]. LightGBM improves the
efficiency of data sampling and sorting, which significantly
reduces complexity and makes it well-suited for handling
large-scale data during training computations. Furthermore,
LightGBM has been thoroughly verified to effectively capture
patterns in time series data and handle a large number of
features with high accuracy [17]. In line with our specific
renewable energy prediction design, we have trained a total
of 24 separate models. Each model is trained to predict wind
power at a specific hour, ranging from lh to 24h, allowing us
to make accurate predictions for each hour of the day.

III. DATA QUALITY VALUATION
A. Reinforcement Learning Framework

We have represented the deconstructive analysis-based data
quality valuation framework visually in the form of Fig. 3. In
the initial step, all features of the data are inputted into a qual-
ity evaluator composed of deep learning network. Based on
the classification output, the evaluator forms high-quality and
low-quality data sets. Subsequently, the high-quality data set
is selected for uncertainty testing within renewable prediction
scenarios. Upon satisfying the boundary conditions, the data
set can be utilized as smart data extracted from the original
data set for better forecasting in distribution network (DN)
application. This sampling process based on data quality aims
to minimize the uncertainty of renewable energy, resulting in
a more reliable data set that aligns with the given conditions.
However, if the boundary conditions are not met, it implies
that the high-quality data set obtained through the current
evaluator selection still exhibits significant uncertainty and
is biased compared to the actual high-quality data. In such
cases, the current evaluation is fed back to the evaluator as an
unsuccessful signal. This prompts the data quality evaluator to
iteratively readjust the parameter weights through self-learning
and repeat the “sampling-feedback” process. This iterative
process continues until the uncertainty validation condition is
met, ensuring that the high-quality data set ultimately satisfies
the desired level of uncertainty.

The sampling-feedback mechanism within this framework
can be facilitated with the assistance of reinforcement learning
theory. In this context, the data quality evaluator functions
as the Agent, while the uncertainty validation outcome serves
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Fig. 3: Sampling-feedback mechanism in data quality
assessment

as the Reward provided by the iteratively trained prediction
model, which can be interpreted as the Environment. The
agent’s strategy for selecting high-quality data is continuously
updated Action based on this feedback, enabling a dynamic
and adaptive approach to data quality assessment.

B. Problem Formulation

In this section, our objective is to rationalize the modeling of
reinforcement learning, with the ultimate goal of expanding the
capabilities of computing data values through the integration of
deep learning techniques. Without loss of generality, we denote
the entire training data set as D = {(x;, yi)}f\;l ~ P where
x; € X is a g-dimensional input vector, containing meteoro-
logical features and power sequence which already shown in
Fig. 2 and P symbolize the origin data distribution along with
renewable uncertainty. Besides, y; € ) is a k-dimensional
output vector, which is generally treated as the forecast for a
future period of time (24 hours). To account for the distinction
between the training and test datasets, we introduce a disjoint
testing dataset denoted as D' = {(x!,y%)}}, ~ P*. In this
context, the target distribution P? is not necessarily identical to
the training distribution P. Our target distribution P? is default
to be deterministic, serving as a reference for correcting and
evaluating the uncertainty present in distribution P.

The framework of the Data Quality Valuation is trained as
shown in Fig. 4. The whole training process involves two
functions: the Data Quality Evaluator (DQE, hgs) and the
Renewable Prediction model (fy = ZZ:1 f&). The hy is a
deep learning network with parameters ¢, designed to capture
intricate patterns in data values. Its role is to assess and filter
the data to ensure high quality, enhancing the overall model
performance. The hy : X x Y — [0, 1] is optimized to output
the weight that determine the probability of being sampled as
high-quality data. These weights can be interpreted as data
values, representing the probability of individual data points
trained for the better prediction model fy, finally to meet the
condition. In essence, the higher the data weight hg(x;,y:),

the more likely the corresponding data point (x;,y;) is to
be selected for training the final model fy. This reflects
the higher quality and significance of the data, as it has a
better chance to contribute to the training of the final task
model, which good enough to meet the uncertainty condition.
Conversely, lower data weights suggest that the data points
are less likely to be chosen, indicating their lower value and
limited impact on the optimal model’s training process. By
assigning these data values, we can effectively identify and
prioritize high-quality data, leading to improved performance
of the final predictive model. To provide a more intuitive
understanding, we can view the sampling process as a binomial
filter S : [0,1] — {0, 1}. This filter determines whether a data
point represented by (x;,y;) is selected (value of 1) or not
selected (value of 0) for training the predictor model. The
formulate of the corresponding optimization problem in the
Reinforcement Learning is as follows:

[Ln (fo (x'),¥")] (5)
[S(h¢ (X> Y)) ‘cf(f(x)v Y)] (6)

min F

hg (xty!)~P!
s.t. fo argfrnln(ngP

where Ly is the loss function calculate during the training of

renewable prediction model, while £;, symbolize the valida-

tion loss between the predicted and testing data.

In this framework, the training data set D is the constant
state, and the selection of high-quality data set S(hg (x,y))
is the action made by DQE (agent). Finally, for each iteration,
the loss is represented as Ly, (fg (x!),y?), which serve as the
reward reinforced the training of the DQE. In flowchart Fig.
4, we use prediction accuracy as the uncertainty validation
and set a convergence exit condition. Due to the require-
ment of the Back Propagation (BP) algorithm for function
differentiability during DQE network training, the function
S(he) with discrete output values of {0,1} does not allow
for regular training. To handle non-differentiable problems,
we employ the Policy Gradient algorithm in reinforcement
learning [18]. The nature of the Policy Gradient algorithm
allows for converting the gradient computation from the orig-
inal target to the logarithm of the probability of the current
action. This transformation helps to circumvent the problem
of non-differentiability in terms of the reward concerning the
agent parameters. We simply assume the high-quality data set
filter S is based on binomial distribution, so the probabil-
ity that the selection vector s is selected based on hy(D)
is that my(D,s) = Prob(s=[S(he (xi,¥i)]_y n) =
Y, [h¢ (xi,y:)% - (1 — hy (xi,yi))l_&}, where s; is the
component of the vector s on data point ¢. As a result, the
single step reward based on the action s is defined as (o),
where:

1(¢)

= E
(x 5" )~ Pt s (D))

_ / ST mo(Ds) - [Ln (fo (1) y")] AP (x',y") (D)

s€[0,1]N

[Ln (fo () .5")]

The gradient of [(¢) incorporate with Policy Gradient is as
follows:
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Fig. 4: The Framework of Data Quality Valuation
for using the MAPE of the prediction results to directly repre-
sent uncertainty. Simultaneously, we introduce reinforcement
Vul(9) learning and leverage policy gradient techniques to address
the non-differentiability issue arising from dataset samplin
(D N]dpP! (x',y" . Y1 gl pung.
/ Z Vomg(D;s) - [Eh (fe( ) )] d <X 24 ) which ensures the iterability and unbiasedness of training.
selo¥ Consequently, we are able to directly utilize uncertainty in
/ Z V¢7r¢ (D, S) 74(D,s) - [gh ( fo (Xt) 7yt)} dpt .renewable energy sceparios to assign values to dataset quality
€01V in a more direct, flexible and robust manner.
Another validity stems from the algorithm. In traditional
= E L N Vel D 8 . .
(xt,y*)~P! [ h (f o (X ) Y )] o108 (m4(D;s)) ®) data value assignment method, like the Shapley Value (SV),
s~y (D) it often requires traversing all potential combinations, as

Since the DQE output hy (x,y) for each data point (x;,y;)
remains continuously differentiable with respect to the action
s, the gradient for the log probability can be computed, allow-
ing for the iteration of the neural network parameters using
the BP algorithm. By applying the convergence condition, the
optimal DQE can iteratively identify the value of each data
point and subsequently filter the high-quality data, enhancing
the performance of the prediction task and contributes to the
overall success of the assessment analysis.

C. Efficient Valuation on Deconstruct Uncertainty

The essence of our proposed framework centers on trans-
lating the complex estimation of data quality into the training
of a DQE network. This process is tantamount to embedding
the interpretation of uncertainty introduced by data quality
directly into this data valuation model. As the well-trained
DQE model processes the data, consisting of wind power
and pertinent meteorological features, it generates a value
index. Consequently, the DQE model has the capability to
decipher the quality distribution within internal data, thereby
deconstructing the uncertainty introduced by the dataset.

Regarding the validity of our proposed framework, it can
be scrutinized from two perspectives. First, in contrast to
employing traditional fixed statistical metrics, e.g., entropy,
for measuring data ambiguity to explain uncertainty, we adopt
a supervised learning model with a data-driven loss function
L;, optimized by the DQE network. Importantly, the selection
of the uncertainty metric is flexible, and in this paper, we opt

illustrated below:

S| S
oo =y PEV S Dy s -
SCD\{i}

where (¢) is the value of data 4, D is the full set of data,
|S| equals to the amount of data in subset S, and V is the
utility defined by data subset. The time complexity of SV,
involving the traversal of the entire subset to compute the
average editorial utility, is exponential and becomes partic-
ularly large as the volume of data increases. Moreover, the
outcomes are not directly pertinent to the acquisition of a
subset of high-value data. The advancement in our approach
lies in reorienting the optimization goal straightly towards
the acquisition of high-quality values, specifically learning
the optimal selection strategy S (he (x,y)). Leveraging the
framework of deep reinforcement learning, we employ gra-
dients to iteratively navigate through batches of samples,
facilitating the exploration and identification of higher-value
subsets. This proves to be efficient in spaces with a large
number of subset samples (2V). Given the stochastic nature
of the policy gradient, we cannot ascertain global optimality
in the final data value ranking. Nevertheless, we can affirm
that the identification of high-quality subsets will result in
substantial improvements in uncertainty reduction within the
specified time constraints. This strengthens the deconstructive
analysis of uncertainty.

V() O

D. The Network Design of Data Quality Evaluator

We have opted for a regionally separated fully-connected
neural network to assess the value of our defined dataset.
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Specifically, in the initial stage of the network, we partition
the input data D = {(xi,yi)}f.vzl, including daily NPWs,
hourly NWPs, past 48 hours power, and next 24 hours power,
separately. Afterward, we reintegrate these partitions in the
later stages of the network. The final output of the network
utilizes the sigmoid function to generate continuous values
between 0 and 1, representing the value of the data, shown in

Fig. 5.
() = —

o(z) = ——

1+e*

This approach effectively segregates the characteristics of
different dimensions while also reflecting the importance of
data integration.

In our experiments, we observed the presence of outliers and
noises in the wind power data. These anomalies often pose
challenges for the DQE, leading to difficulties in fitting the
underlying patterns of data features and values, oscillate during
the training period at the beginning. To expedite convergence,
we undertake the base model f, which trained on the testing
dataset before DQE training. This trained model is then
employed as a parameter to calculate the deviation of wind
power data relative to ﬂ,, named as Error Correction (E£C),
serving as one of the reference indices for the output value of
the DQE.

(10)

Yi— fv (%)

EC (x,yi) = -
(xi,y:) —

(1)
where € is a small value avoid EC tends to infinity. It is
imperative to emphasize the rationale behind this approach
lies in the consistency of parameters within ﬁ, throughout the
training process. The primary objective of DQE model training
is to scrutinize the uncertainty distribution within the training
set dataset by evaluating predictive performance on the test set
during validation. The error correction furnishes the distance
of the input data relative to the predictive patterns observed
in the test dataset, utilizing pretraining-like parameters as a
potential reference for the DQE for potentially identifying the
outliers and noise. Importantly, it does not impact the modeling
of the inputs and outputs of the DQE, nor does it contradict
DQE’s ability to gain insights into D! in Reinforcement
learning. In summary, the DQE produces 0-1 values as data
values by taking into account both the meteorological features
and the wind power sequences of the data as inputs, and the
EC mechanism plays a role in potentially managing outliers
and noise within the data during the training process.

IV. MECHANISM FOR ALGORITHM OPTIMIZATION
A. Ensurement of Exploratory

Combining the actual numerical testing, we find that
hg (x;,y:) is likely to be near O or 1 for all data in D.
The former means that the data are all worthless and the
datasets will be randomly selected in each round, which
is the protection mechanism we design to avoid learning
interruption. While the latter means that the datasets are all
very valuable and cannot be discarded, which caused by the
small set of data changing bring little effect of the whole
performance.
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Fig. 5: The Network Design of Data Quality Evaluator

This convergence to a local optimum is due to the lack
of exploration of potential strategies. In RL framework, we
achieve exploration through a probability-based stochastic
strategy, which favors diversity and avoids overly deterministic
strategies. By incorporating randomness and uncertainty in
our exploration process, we can effectively explore various
possibilities and discover more diverse solutions. This stochas-
tic approach enhances the model’s ability to adapt and learn
from different scenarios, leading to improved performance and
better handling of uncertainties in the predictive tasks. We then
design penalty objective function lpenaity = U(¢) + p(¢; 0, h)
to increase the likelihood that the learner will jump out of the
local optimum and continue exploring:

N
p(¢;0,h) =0 - max (Z hg (xi,yi) = N - h,0> +
i=1
N
0 - max 1—Zh¢(xi,yi) —N-h,0
i=1

(12)

where o is the penalty factor and h is the threshold near 1.
When the value of the data is excessively concentrated around
certain pole of 0 or 1 € RY, the penalty term activates
on a factor o scale. This mechanism guides the DQE away
from local optima by imposing a substantial loss for persistent
exploration. In doing so, the DQE is encouraged to explore
alternative solutions more extensively, preventing it from be-
coming overly focused on a limited range of data values and
facilitating better convergence towards global optima.

B. Improvement of Sample Efficiency and Stability

As an on-policy algorithm, the policy gradient is prone
to instability. This instability can arise from issues such as
inadequately determined training step size. If the step size is
too large, the learned policy may oscillate and fail to converge;
if it is too small, the training process may become lengthy
and computationally inefficient, which is highly undesirable
for calculating data values [19].

To overcome these challenges and improve the algorithm,
we introduce importance sampling. By implementing impor-
tance sampling, we enhance the efficiency of sample usage,
effectively transforming the policy gradient into an off-policy
algorithm. This modification addresses the instability issues
and allows for more stable and efficient training, making the
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algorithm more suitable for calculating data values in our
context. As the result, the DQE learn from the samples that
come from another networks ¢, and the objective function [
can be re-written as follows:

l_/ > me(Dis)- [Ln (fo (x),y")] dP* (x',y")

se[0,1]N
+(D,s
/ Z 74(D;s) E ; (L (fo (x'),y")] dP*
s€[0,1]N
" ey m‘h (fo (Xt)ayt)l (13)
SNW(E('D,-)

Howeyver, this enhancement comes at a cost. The use of off-
policy algorithm increases the variance of the estimation,
resulting in the following:

D,
ar |28 o
s~z (D) (D S)
2
_ E 7T¢(D,S)£h _ E 7T¢('D7S)£h
s~y (D) | T5(D,s) s~y (D) | (D, s)
2
7T¢(D,S) ( )
= E L3 - E L 14)
SNW¢(D7')[ (D7S) SNT‘—¢(’D7')[ h] (
For the online-policy, the expression for its variance is:
2
Var [L]= E 52—( E E) (15)
oty y Lo s~m(D,->[ ) i,y 1)

The second term remains the same, while the first term differs
due to the distribution gap between the two policies ¢ and
qg. If the gap between the two distributions is considerable, it
may result in a significant deviation from the expected value
of the final objective function obtained [20].

Considering that off-policy sampling increases the variance
and restricts updates to new policies, we mitigate these effects
by introducing the clipped function. This function limits the
difference between old and new policies, allowing us to
maintain a more controlled and less sensitive policy gradient,
even with larger step sizes, as follows:

clip(z,a,b) = min(max(z,a),b) (16)

The use of the clipped function helps strike a balance between
stability and efficiency in our policy gradient algorithm [21].
In summary, we reformulate the objective in off-policy and
clipped function as l.;p:

lclip

. 7T¢,(D,S) . .
= F At L N | .
(xt7yt)NPtcllp (%@(Dv 5)’ 6,1+ e) L (fo (x'),y")
s~z (D)
(17)

where ¢ is a small constant that restricts the probability
ratio of the same action under different policies, thereby
ensuring that the gradient used for network updates remains
appropriately balanced and neither too large nor too small. In
our experiments, we aim to maintain the sample network close

to the DQE network. To achieve this, we update the sample
network with the DQE network assignment every c times.
This approach helps to stabilize and align the two networks,
facilitating more consistent and reliable training outcomes. By
ensuring that the moments of the sample network are in prox-
imity to the DQE network, we enhance the performance and
convergence of our algorithm during the training process. We
combine these two components with the original framework
to form the following Penalty Clipped Data Valuation (PCDV)
algorithm with baseline ¢ for increasing stability.

Algorithm 1 Penalty Clipped Data Valuation (PCDV)
Input: training dataset D, loss function Ly, learning rate
B, penalty factor o, value threshold h, clipping threshold e,
network update cycle ¢
Output: learner hy, data value hy(D) for i =1,2...N
Initialize: parameter ¢

1: forme 1,2...M do

2 if ¢ | m then:

3 00

4 for i € 1,2...N do

5 Sample a filter vector s; <— S (hy (x;,¥:))

6: Train the Renewable Predictor:

7 fo=argmin sTL;(f(x),y)

8 Update the Learner parameter:

9: ¢+ &+ B+ [leiip — 0] - Vg log (m(D, s))
10: +8-Vyp(p;0,h)
11: Update the baseline:

12: § =15+ Ll + p(¢s0,h)]
13: if convergence then:
14: break

15: return hy, hg(D) for i =1,2..N

V. NUMERICAL RESULT

Given the considerable cost associated with parameter tun-
ing in reinforcement learning, we adopted the relevant param-
eters and initialization settings from [21], [22]. In particular,
we set ¢ = 3, h = 0.9 and ¢ = 0.2. We conducted an
uncertainty analysis using the 2017-2018 hourly aggregate
wind power data from Yunnan Province [23]. Concerning
meteorological features, we leveraged NASA’s wind-related
data for 136 counties in Yunnan Province, spanning the hourly
readings throughout 2017-2018. This dataset was employed to
underpin the prediction of wind power and comprehensively
account for sources of uncertainty.

A. Meteorological Feature Clustering

To investigate the impact of varying the number of cluster-
ing centers (k) on capturing averaged weather features in the
Yunnan province, we performed a sensitivity analysis based on
temperature distribution for values of 1, 3, and 5, as illustrated
in Fig. 6. Our analysis indicates that varying values of k do
not yield significant changes in the distribution of temperature
features. Consequently, to ensure consistency and rationale in
our approach, we have chosen to set k& = 3 for clustering 136
counties in Yunnan Province based on meteorological features.
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The resulting clusters were then averaged to summarize the
features sequence of Yunnan Province.

5 0 5 10 15 o2 3 %0
Temperature

Fig. 6: Comparison of varied clustering centers on

temperature distribution

The results, representing the clustering of counties using
latitude and longitude, are depicted in Fig. 7. We observe
a lack of clear geographic patterns in the meteorological
clustering centers, indicating inconsistencies with the actual
geographic clustering centers. This highlights the disparity
between the meteorological and geographic distributions in
Yunnan Province, underscoring the necessity for feature-based
clustering.
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Fig. 7: The clustering results of 136 counties in Yunnan
Province

B. Prediction Model Selection

Following the averaging of clustering centers, we acquire all
the requisite input and output features for the prediction task.
Our intention is to utilize the superior-performing prediction
model as a benchmark for the identification of data value
in our proposed PCDV algorithm. Given that the results of
the predictive model in data valuation serve as a reward for
each iteration, and considering our emphasis on obtaining a
more accurate assessment of data value rather than aiming
for high precision under a fixed dataset, our specific request
is for the prediction model to converge rapidly and output its
performance accurately and robustly within a reasonable time-
frame. We select LASSO, Support Vector Regression (SVR),
Multilayer Perceptron (MLP), RandomForest (RF), Gradient
Boosting Decision Tree (GBDT), and LightGBM as candidate

predictive models, and conduct a comparative analysis using
cross-validation based on MAPE to assess their predictive
performance, the results are in Table II. Our analysis revealed
that LightGBM demonstrates a notably inferior error (30.55%)
in estimating wind power output compared to other predictive
models. Consequently, we have opted for LightGBM as the
preferred prediction model for our study.

TABLE II: Prediction Model Comparison

Model Performance (MAPE)
LASSO 73.19%
SVR 66.30%
MLP 60.77%
RF 48.39%
GBDT 50.56%
LightGBM 30.55%

C. Validations and Comparisons of Data Valuation

The proposed PCDV algorithm is repeatedly tested in mul-
tiple experiments. In each experiment, optimal data values
are obtained after the training process of DQE, serving as a
index for the probability of data in the best quality dataset. To
evaluate the algorithm’s effectiveness, we employ a method
wherein we sort the calculated data values and progressively
eliminate a portion of data from the lowest/highest, symbolized
by “rlow”/“rhigh”. Subsequently, we retrain the prediction
model using a subset of the retained data and assess the
prediction accuracy (MAPE) on the test set. To underscore
the algorithm’s superiority, we conduct a comparative analysis
with data Shapley Value (SV) [13] and Shannon Entropy
(SE) with Parzen window estimation method [10]. Given that
entropy is interpreted as a statistical characterization of the
dataset, we employ a leave-one-out approach to compute the
value for individual data. Results are illustrated in Fig. 8.
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Fig. 8: The numerical outcomes of data removal experiments

Under the PCDV algorithm, we observed that the removal of
low-value data effectively reduces MAPE, especially when the
removal amount is within 25% with the impact intensifies with
increased data removal. At the 25% removal mark, the quality
of the retained data subset peaks, resulting in a controlled
MAPE of 28.20%, accompanied by a proportional 7.69% re-
duction in uncertainty. However, as data removal surpasses this
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threshold, the value of the removed data is increasing. Some
feature data loss leads to a decline in the model’s generality,
causing a rebound and rise in MAPE, while reflecting the rise
in prediction uncertainty caused by the dataset. Conversely,
the trend in removing high values is notably more consistent:
the MAPE of the predictive model increases with the growing
amount of removed data, and this rise tends to be more rapid
and steep. This pattern emerges because data uncertainty is
influenced by a blend of data quality and data quantity. The
gradual intensification of large-scale feature data missingness
with increased removal contributes to heightened uncertainty
in the dataset.

In contrast, SE’s assessment of the quality of datasets with
large-scale features tends to be significantly biased. The values
defined by entropy cannot not effectively reduce uncertainty
by enhancing data quality; instead, they introduce disorder in
the ordering of values. This limitation arises because Entropy-
based data value does not consider the impact of predictive
modeling on the data, and its ability to extract complex
predictive laws is constrained when dealing with datasets with
large dimensions. Besides, the removal pattern of SV is not as
pronounced, and the maximum MAPE improvement achieved
by removing low-value data remains at 25%. This reduction in
uncertainty is nearly by 1.70%, which is considerably smaller
compared to PCDV. Simultaneously, the MAPE increase ob-
served in PCDV when removing high-value data is signifi-
cantly larger than that in SV. These more interpretable results
and the more accurate enhancement in prediction performance
affirm that PCDV possesses an advantage in evaluating data
quality.

TABLE III: Performance differences under removal of
valued dataset (AMAPE)

Fraction CDhV PDV PCDV
5% 4.52% 3.72% 4.04%
15% 13.43% 14.07% 16.12%
25% 25.60%  26.69%  29.55%
35% 4421% 42.84%  53.66%

On the other hand, we also conduct ablation tests on the
improvements, by removing the penalty (CDV) and clipped
function (PDV) from the PCDV algorithm. To quantify the
differences more effectively, we utilize the MAPE difference
(AMAPE) between the removal of equal amounts of high-
value data and low-value data as an evaluation index. The
specific results are presented in Table III. As the amount of
removed data increases, we observe that the penalty (P) and
clipped (C) mechanisms in PCDV play a more pronounced
role, which enables the algorithm to more accurately capture
the quality patterns present in the dataset.

D. Data Quality in Wind Power Forecasting

To illustrate the influence of our data valuation on wind
power forecast performance while parsing uncertainty, we
present the actual and predicted outputs for wind power curves.
The predicted outputs encompass results obtained by training

the model with the full dataset without data filtering (r_0%),
as well as predictions after removing 25% of low-value data
(rlow_25%) and 25% of high-value data (rhigh_25%), as
depicted in Fig. 9. In the two presented prediction scenarios,
we observe that the impact introduced by data filtering is
negligible within the initial 8 hours. This can be attributed
to the time series nature of wind power, which exhibits some
inertia during next short period, resulting in a minimal impact
from different quality prediction models on prediction accu-
racy. Nevertheless, as time progresses, the role of numerical
inertia on wind power output diminishes, and the significance
of forecasting models trained using historical wind and meteo-
rological data becomes more pronounced. We observe that the
variance in forecast performance among different quality of
datasets becomes substantial in the later stages of wind power
forecasting, particularly around the 18-hour mark. The removal
of low-quality datasets considerably diminishes prediction bias
compared to no data filtering, whereas the exclusion of high-
value data markedly amplifies the range of bias, deviating
significantly from the actual output. This serves as an intuitive
demonstration of the efficacy of our uncertainty deconstructive
analysis within the context of our valuation paradigm. The
significance of data value becomes distinctly evident during
periods characterized by heightened uncertainty in wind power
forecasts.
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Fig. 9: Actual and predicted output of wind power

Furthermore, to intuitively showcase the data quality evalu-
ator’s performance through the feature distribution of high/low
value datasets, we segment the data set into 8 equal intervals
based on data values, arranged from high to low. We examined
the disparities in the temperature and humidity distributions
across these datasets, and the specific results are depicted in
Fig. 10. Each point represents a data subset, and the color
reflects the magnitude of averaged data value of each subset.
We observe a discernible trend wherein higher-value data
subsets exhibit greater variance in their features distribution.
This phenomenon can be attributed to the increased dispersion
of features within a dataset, encompassing a broader range
of crucial characteristic samples. Consequently, higher-value

Authorized licensed use limited to: Peking University. Downloaded on October 13,2024 at 02:30:59 UTC from IEEE Xplore. Restrictions apply.

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.



This article has been accepted for publication in IEEE Transactions on Industry Applications. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TIA.2024.3384130

IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS

data subsets tend to be more advantageous for general model
training. In contrast, datasets with more concentrated features
cover a relative narrower span of important characteristic
samples, resulting in a weaker average marginal effect on
model training.
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Fig. 10: Variance of features in datasets of different value

VI. CONCLUSION

In this paper, we present an uncertainty evaluation frame-
work that analysis meteorological and energy data in re-
newable scenarios. Leveraging the technical framework of
reinforcement learning, we conduct the algorithm theoretically
and propose enhancement strategies to improve its efficiency
and stability. Using the 2017-2018 aggregate wind power
generation data from Yunnan Province and hourly meteoro-
logical data from NASA, we successfully extract high-quality
dataset by assessing the value of each wind uncertainty-related
data point based on forecasting performance. We validate the
effectiveness of our data quality valuation framework and
the PCDV algorithm in wind power prediction enhancement
through comparative and removal experiments. Furthermore,
we conduct an in-depth analysis of the role identified high-
quality data plays in reducing wind power uncertainty and its
correlation with wind-related features’ patterns. In conclusion,
this data quality assessment paradigm can serve as a guiding
framework for data-driven power system forecasting and sub-
sequent decision-making applications.

In contemplating future research directions, two crucial
points warrant in-depth investigation: 1. Exploring the incor-
poration of applications for smart grid decision-making. 2.
Investigating the generalizability of the methods to a broader
range of data dimensions.
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