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BROADER CONTEXT

As big data technologies advance and data volumes grow, effectively leveraging these resources for complex decision-making has become a
critical challenge for academia and industry. This review examines the transformative impact of big data and intelligent systems on tradi-
tional optimization paradigms, highlighting the continuum of data-driven optimization from predictive modeling to decision implementation.
Key methodologies such as "sequential optimization,” "end-to-end learning,” and "direct learning” are analyzed, offering both theoretical in-
sights and practical implications. Notably, we discuss breakthroughs such as implicit differentiation techniques, surrogate loss functions,
and perturbation methods, which provide methodological guidance for achieving data-driven decision-making through prediction. By empha-
sizing the critical challenges across multiple dimensions, including data quality, model efficiency, and resilient decision-making under uncer-
tainty, our review offers forward-looking insights to guide future research and foster the broader application of these approaches in diverse
real-world scenarios.

ABSTRACT

Data-driven approaches have revolutionized traditional optimization methods by integrating prediction with decision-making. This review examines
the theoretical foundations, strengths, recent advancements, and limitations of three key methods—sequential optimization, end-to-end learning,
and direct learning—highlighting their practical applications in power grid scheduling, operations management, and intelligent autonomous control.
A multidimensional comparison is presented, followed by a discussion of the challenges in data-centric methodology, optimization methodology,
and decision-making application. This paper offers a methodological guide and outlines future directions for academia and industry to enhance

decision-making in complex data environments.

INTRODUCTION

In the era of big data, the exponential growth in data volumes has
opened unprecedented opportunities for refined decision-making
across diverse industries and scientific fields.' Traditional deterministic
models, constrained by their oversimplifications of complex realities,
are increasingly being replaced by data-driven approaches that excel
at extracting intricate patterns from large datasets.? These advanced
models leverage the granularity of real-world data to enable precise, pro-
active decision-making, effectively transforming raw data into strategic
value. For example, in energy systems, multi-timescale forecasting
techniques are used to optimize economic dispatch. These techniques
help balance supply and demand in real-time, addressing uncertainties
from renewable energy sources and fluctuating loads.® These methods
not only help operators anticipate short-term variability in solar and
wind generation but also account for longer-term demand patterns,
enabling precise operational strategies and ensuring system stability
and cost efficiency.”

Prediction methodologies based on machine learning or deep
learning extract features from real-world data to uncover latent pat-
terns, supporting tasks such as diagnosis, predictive forecasting,
and pattern recognition.” However, in practical applications such as
power systems or market operations, prediction is rarely the final
step. Instead, it serves as an intermediary to inform optimization
models that enable smart, data-driven decision-making, such as
determining optimal resource allocation under uncertainty, designing
adaptive pricing strategies, or enhancing grid reliability through pre-
dictive maintenance. Given the interactions between prediction and
decision-making, existing data-driven optimization methods can be
broadly categorized into three frameworks, as illustrated in Figure 1,
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which provides a process overview, and further detailed in the
comparative summary in Table 1.

(1) Sequential optimization (SO): this two-stage approach decou-
ples and sequentially arranges prediction and decision-making.
Predictive models are first trained on multi-scale data to esti-
mate uncertain variables, with their outputs subsequently
serving as inputs for optimization to derive decisions. As one
of the most intuitive data-driven methods, SO offers flexibility
and modularity, enabling independent advancements in predic-
tive forecasting and optimization modeling to be seamlessly in-
tegrated. However, this two-stage coupling is subject to theoret-
ical biases stemming from mismatches between predictive
objectives—often optimized using norm-based loss functions
such as mean squared error (MSE)—and decision-making goals,
such as maximizing multi-dimensional social welfare under dy-
namic and uncertain conditions.

(2) End-to-end learning (E2E): by embedding optimization struc-
tures into the training process, E2E shifts the focus from tradi-
tional statistical learning objectives to decision-centric loss
functions. During each training iteration, prediction results are
processed through an optimization layer to generate decisions,
with gradients subsequently backpropagated from validation in
the decision-making context to refine and calibrate the predic-
tive model. This closed-loop framework enables decision-
focused learning, reducing biases inherent in traditional two-
stage methods and aligning predictive tasks with optimization
objectives. Techniques such as the neural network-based im-
plicit differentiation algorithms proposed by Amos et al.® and
the surrogate objective approach developed by Elmachtoub
and Grigas’ exemplify the practical implementation of E2E.
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Figure 1. Frameworks for integrating prediction and decision-making

(3) Direct learning (DL): compared with SO and E2E, which relies
on explicit optimization formulations, DL is tailored for sce-
narios with complex or implicit optimization structures, such
as robotics control, where policies must be directly learned
from human demonstrations to handle dynamic, unstructured
environments.® By bypassing explicit optimization, DL fo-
cuses on aligning predictive outputs with end-goal perfor-
mance metrics, enabling adaptive decision-making. Tech-
niques such as imitation learning (IL) replicate expert
behaviors, while reinforcement learning (RL) and model-free
approaches dynamically adjust to evolving conditions, such
as in personalized education systems, where teaching strate-
gies adapt based on student performance.’ These applica-
tions underscore DL's ability to integrate data directly into de-
cisions, excelling in contexts where traditional optimization is
infeasible.

Existing reviews often focus on specific aspects of optimization or data-
driven methodologies. For instance, Kotary et al.'® provide an in-depth
exploration of end-to-end optimization techniques, while Qi and
Shen'' discuss the applications of integrated methods in operations
management. Choi et al.'? highlight the role of data analytics tech-
niques—such as statistics, machine learning, and data mining—in ad-
dressing various operational challenges, and Zhang and Li'® focus on
decision-oriented learning strategies to tackle uncertainties in future
power systems. While these reviews provide valuable analyses of
data-driven methods within their respective domains, they fail to
address the crucial interaction between predictive modeling and deci-
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sion-making processes. This review bridges this gap by categorizing
methodologies that integrate predictive models with decision-making
frameworks, with an emphasis on their theoretical foundations and
practical relevance across multiple domains. Unlike previous reviews
limited to specific applications, this work adopts a broader perspective,
targeting a diverse audience of researchers and practitioners in data
science and optimization. By bridging optimization theory and data-
driven methodologies, this review outlines strategies to advance data-
driven optimization across diverse fields, offering insights to foster
interdisciplinary collaboration and guide future research. It also ana-
lyzes practical challenges, including data-centric methodology, optimi-
zation methodology, decision-making application, a focus on aspects
such as data quality, uncertainty modeling, and interpretability. Ulti-
mately, this review provides perspectives that connect theoretical foun-
dations with practical applications to support the development of data-
driven optimization approaches.

A REVISIT TO SO

To establish a foundation in optimization, we first revisit the fundamen-
tals of convex constrained optimization (CO), which underpins many
data-driven decision-making frameworks. A general CO problem can
be formulated as follows:

minizmize f(z,y) (Equation 1)

subjectto g(z,y) = 0,h(z,y) <0 (Equation 2)
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Table 1. Comparative summary of prediction-to-decision methodologies

Method Training objective

Prediction-decision relationship

Theoretical applicablity

Sequential prediction loss prediction outputs are treated
optimization (e.g,, MSE) as fixed inputs for subsequent
optimization for decision-making
End-to-end decision loss prediction models are trained
learning (e.g., regret) through a closed-loop framework

focused on optimizing
decision performance

Direct learning decision loss

prediction models directly learn

systems with explicit optimization formulations,
but entails high computational costs and limited
adaptability to decision-making feedback

requiring decision-focused accuracy, with the added
benefit of minimizing prediction bias in decision-making

with implicit decision logic or where traditional
optimization formulations are infeasible

(e.g., task- optimal decision-making
specific loss strategies without relying on
functions) explicit optimization structures

Here, f denotes the objective function, which depends on the decision
variable z and an estimated parametery : = p,(x), where p; is a predic-
tive model parameterized by 4 that map input features x to the predicted
variable y. Importantly, y often deviates from the true value y due to pre-
diction errors. The constraints g (equality constraints) and h (inequality
constraints) define the feasible region for z. To illustrate this structure
with a real-world application, consider a resource allocation problem
where z represents the allocation strategy and y represents predicted
resource demands, which guide the decision-making process. The
objective function f quantifies the cost or efficiency of the allocation,
while the constraints g and h enforce budgetary limits, resource avail-
ability, or system capacity.

This optimization formulation plays a critical role in bridging prediction
to decision-making problems. In this framework, the predicted param-
eter y acts as a signal that links the predictive model with the optimiza-
tion process. It impacts both the objective function and the constraints,
guiding the decision-making process based on the model’s predictions.
When y deviates from y, the resulting optimization may lead to subop-
timal decisions, underscoring the need to align prediction accuracy with
decision-making objectives. It is worth noting that this section focuses
on the point prediction case. Extensions to uncertainty-aware predic-
tions, such as stochastic optimization'* and distributionally robust
optimization,'® will be discussed in subsequent sections. The summary
of the list of the three data-driven optimization frameworks and their
related methods can be found in Figure 2.

Under the SO framework, the process begins by training a predictive
model using machine learning or deep learning techniques on historical
resource demand data.'® The trained model produces next-stage pre-
dicted demands, which serve as inputs to an optimization problem.
Optimization solvers such as CVX or Gurobi are then used to solve
the problem, incorporating specific constraints, including integer re-
quirements or other domain-specific considerations.'’ The resulting so-
lution represents the final decision, completing the data-driven deci-
sion-making process. This framework exemplifies the decoupled yet
sequential approach to integrating prediction and optimization, a hall-
mark of SO methodologies. The theoretical foundation of SO hinges
on the accuracy of the predictive model. In time series forecasting
tasks, which are widely employed in multi-stage decision-making sce-
narios, such as energy scheduling, supply chain optimization, and finan-
cial portfolio management, norm-based statistical loss functions such
as MSE and mean absolute percentage error (MAPE) are commonly uti-
lized to measure the discrepancy between predicted values y and true
values y.

As aresult, recent research has shifted focus from traditional statistical
models, such as support vector machines and k-nearest neighbors, to
advanced deep learning architectures and large-scale models, repre-
senting significant progress in accurately identifying patterns in time
series forecasting. In the context of energy markets, time series predic-
tions, such as electricity price forecasting, demand estimation, and
renewable energy output prediction, have become increasingly critical
due to heightened market volatility driven by the growing penetration
of renewable energy sources.'® These predictions are foundational for

@ CelPress Partner Journal

optimizing resource allocation, managing grid stability, and developing
effective bidding strategies, illustrating their role within the broader
complexities of energy systems. To address these challenges, multi-ho-
rizon forecasting methodologies have been adopted to enhance predic-
tive efficiency across various timescales.'® A two-stage framework,
which first forecasts discrete events such as price spikes and subse-
quently estimates continuous variables, has further improved fore-
casting accuracy.?” In addition, hybrid models integrating long short-
term memory (LSTM) networks with wavelet transformations have
demonstrated superior forecasting precision.?’ Convolutional neural
networks have proven effective in capturing local patterns and extract-
ing high-level features,?” while transformer models have advanced the
field by managing long-range dependencies through attention mecha-
nisms.?® These methodological advancements collectively highlight
ongoing efforts to improve predictive performance across a wide range
of time series forecasting tasks, addressing the multifaceted needs of
dynamic and volatile market environments.

Mismatch between prediction and decision

In practical applications, SO often encounters challenges due to the
inherent limitations of achieving absolute predictive accuracy. Predic-
tive models are typically trained using gradient descent algorithms,
which terminate once the prediction loss reaches a predefined
threshold to avoid overfitting, while striving to identify patterns as effec-
tively as possible. However, decreasing prediction error does not neces-
sarily translate into decision-making advantages, as the relationship
between prediction and decision performance is often asymmetric in
real-world scenarios.?* Unlike the symmetric structure of norm-based
prediction losses, decision-making criteria are rarely straightforward.
For example, in load forecasting, operational costs in power systems
are asymmetrical. Over-forecasting can lead to unnecessary generation,
increased operational reserves, and inefficient resource allocation,
while under-forecasting may result in under-supply scenarios, triggering
costly balancing actions, reliance on fast-start units, and potential risks
to system reliability. Norm-based statistical prediction losses treat both
over- and under-forecasting errors equivalently, failing to capture these
operational asymmetries.”® This mismatch arises because decision-
making relies on the practical environment to account for more implicit
patterns in time series data. Valuation metrics in decision-making are
often neither explicitly symmetric nor norm-based but are shaped by
the nonlinear, implicit, and sometimes dynamic nature of objectives
(Equation 1) and constraints (Equation 2). The inconsistent alignment
between the descent direction of prediction loss and the cost objective
frequently results in suboptimal decisions that deviate from the true
optimal solution, potentially undermining the overall effectiveness of
data-driven strategies in scenarios that place a high emphasis on deci-
sion accuracy.

E2E

To address the mismatch issue, E2E, also known as decision-focused
learning, tightly couples prediction and decision-making within the
training process. Unlike SO, E2E not only retains the sequential struc-
ture of prediction followed by decision-making but also integrates
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Figure 2. Taxonomy of data-driven optimization advancements

decision-making valuation directly into the loss function. This approach
enables the predictive model to be trained iteratively through backpro-
pagation of decision loss gradients, passing through the optimization
structure to update the model parameters in a closed-loop manner.

For the optimal decision of the problem with objective (Equation 1) un-
der constraints (Equation 2), denoted as 2* : = M(Y), where M repre-
sent the mapping between input prediction y to optimal decision z*. An
intuitive definition of decision loss quantifies the discrepancy between
decisions made under the predicted scenario y and those under the true
scenario y. It is typically expressed as:

f(M(Y),y) — f(M(y),y) (Equation 3)

which is commonly referred to as “regret.” To accommodate diverse
practical scenarios, the decision loss can also be expressed more
generally as £(M(y),M(Y)). The general form facilitates the incorpora-
tion of theoretical constructs, such as relative regret in the newsvendor
problem,”® where customized loss functions are designed to better
align with specific decision-making objectives. The primary goal of
E2E is to train the predictive model with parameters § to minimize £,
aligning predictive outputs directly with decision-making goals. Based
on the chain rule, the gradient of the decision loss £ with respect to
the prediction parameter 4 is expressed as follows:

AL _ OL(M(Y), M(Y) AM(Y) 0y
00 OM(Y) ay o6
with a flow chart illustrated in Figure 3 for better understanding.
The first term, 2, can be computed directly since it depends solely on
the predefined loss function £. The last term, % is determined by the
internal structure of the predictive model and can be obtained through
standard backpropagation. The primary challenge, however, lies in

(Equation 4)

computing the intermediate term, a";‘—i‘” (or %) which represents the
y y

gradient of the optimal decision M(y) with respect to the predicted
parameter y. The primary challenge lies in computing the intermediate

term “:—;(y) which represents the gradient of the optimal decision M(y)

with respect to the predicted parameter y. For optimization tasks with
analytic solutions, these gradients can be directly derived using explicit
expressions.?’ In unconstrained optimization scenarios, Taylor expan-
sion techniques can effectively simplify gradient computation.?® How-
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ever, this process becomes significantly more intricate in general CO
problems, where decision outcomes are implicitly governed by the un-
derlying optimization structure, necessitating specialized methods for
accurate gradient evaluation. This section introduces three categories
of approaches to E2E, with a detailed taxonomy illustrated in Figure 2,
along with an analysis of computational cost and transferability chal-
lenges in E2E frameworks.

Implicit differentiation methods

To establish an equivalence between prediction and decision-making,
the most direct approach involves applying the implicit gradient theo-
rem derived from the Karush-Kuhn-Tucker (KKT) conditions. Specif-
ically, for convex optimization problem defined by objective (Equation 1)
and constraints (Equation 2), the Lagrangian function L is expressed as:

(Equation 5)

where 1 and v are the multipliers for the g and h constraints in (Equa-
tion 2), respectively. The KKT conditions, which ensure optimality,
include stationarity, primal feasibility, and complementary slackness,
and are represented as:

VoL(Z", 2, v".Y)
=0 (Equation 6)

Kz xvy) = [diag(ﬁ*)g(i*ﬁ)
h(z",y)

These conditions ensure that Z* meets the optimization criteria. By
applying the implicit function theorem, if the derivatives and the Jaco-
bian matrix of K with respect to z* (J;-K) are invertible, then the deriva-
tive of the optimal decision Z* with respect to the predictive output y is
expressible as:

. oz
JyZ = (')V

= — [UaK] " [UyK] (Equation 7)

Thus, the key gradient calculation during each epoch of predictive
model training reduces to computing the Jacobian matrix of K, followed
by inverting J;- K and multiplying it with JyK under the given parameters.
This process efficiently captures the sensitivity of the optimal decision
Z* with respect to the predictive output y.

Building on this theoretical foundation, E2E has advanced substan-
tially with methods that integrate optimization layers into neural
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networks to enable smooth gradient propagation. A key breakthrough
was made by Amos et al., who introduced OptNet, a GPU-accelerated
quadratic optimization layer capable of efficiently addressing complex
optimization-decision problems.® This layer facilitates seamless back-
propagation of optimization gradients through neural networks,
enhancing computational efficiency and enabling more effective deci-
sion-driven training. Further advancements have expanded the appli-
cability of these methods. Lee et al. extended this framework to opti-
mize embedding models for meta-learning tasks, demonstrating the
utility of integrating optimization layers in improving task generaliza-
tion.”® At the same time, Agrawal et al. made a key contribution by
proposing a structured approach to convex programming. Their
method canonicalizes optimization problems into cone programs,
enabling efficient computation of derivatives for solving complex
convex optimization tasks.>° Recent efforts have also focused on ad-
dressing challenges associated with nonsmooth objective functions.
Bertrand et al. and Blondel et al. proposed efficient methods for man-
aging modular automatic implicit subdifferentials, a crucial advance-
ment for extending E2E to nonsmooth and large-scale optimization
settings.®'*? These innovations, combined with the rapid advance-
ments in deep learning, notably enhance the capacity of E2E frame-
works to tackle diverse and computationally demanding optimization
problems.

Surrogate loss methods

Despite the advantages of implicit differentiation methods, their compu-
tational cost remains a key concern. As shown in Equation 7, each
training iteration requires calculating and inverting the Jacobian matrix,
which can be computationally expensive, especially for large input
batches. To mitigate this, EImachtoub and Grigas proposed simplifying
the gradient calculation using surrogate loss functions.” For linear
objective functions defined as f(z,y) = y”z,theregret can be expressed
as £ = y"(M(Y) —M(y)), as in Equation 3. By ensuring that the con-
straints in Equation 2 are independent of y, a convex surrogate loss
for y can be obtained through various methods, including duality, data
scaling approximation, and first-order approximation, which is known
as Smart "Predict, then Optimize" + (SPO+) loss and is defined as follows:

Lspo, = — (2¥ — ¥) M2y — y)+(2¥ — y) M(y)

Considering the linear nature of the objective function, the subgradient
of this loss is given by:

(Equation 8)

—~ 0L gpo+ .
2M(Y) — 2M(2Y — y)e as;" (Equation 9)
As a result, the term —£_.240) iy Equation 4 can be efficiently

am(y) dy
computed using two evaluations of the objective function with param-
etersy and 2y — vy, respectively. This streamlined approach eliminates
the need for direct Jacobian matrix computation by leveraging the sub-
gradient of the convex surrogate loss. Moreover, it has been theoreti-
cally proven, using Bayesian risk analysis, that minimizing the surrogate
loss Lspo, is equivalent to minimizing regret under mild conditions, of-
fering a substantial improvement in computational efficiency for linear
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objectives. In addition, strategies such as problem relaxation and warm-
starting have been developed to address the complexities of combina-
torial optimization, further broadening the scope of E2E.**

Beyond SPO+, additional approaches have been developed to overcome
the limitations of gradient calculation through innovative reformula-
tions. One notable advancement is the use of smooth approximations
to manage discontinuities in the objective function, combined with reg-
ularization terms to improve the differentiability of the optimization pro-
cess.** Other methods reformulate the original optimization problems
into tractable proxy tasks that preserve decision space while enhancing
computational efficiency without compromising solution quality.*®
Furthermore, noise-contrastive estimation techniques treat non-optimal
solutions as negative examples, leveraging learning-based surrogates
to improve the discriminative power of the loss function.>® These ad-
vancements streamline E2E gradient computation using surrogate
methods, greatly improving the efficiency of decision-focused training.

Approximation methods

In addition to computational efficiency, the validity of gradient informa-
tion in optimization with a polyhedral feasible domain and a linear
objective is problematic, as changes in y may not always affect the
optimal solution z*, and infinite solutions may occur. As shown in Fig-
ure 4A, the optimal solution lies at extreme points, where y and y; may
yield the same solution, while y, leads to a different one. Consequently,
the gradient is often undefined or zero, hindering updates to the predic-
tive model.

To improve gradient smoothness and differentiability, scholars have
introduced conceptual approximations using noise. By adding
Gaussian noise ¢Z to ¥ , the perturbed solution is defined as:

2y = EZ[M(Y + €2)] (Equation 10)

This perturbed expectation replaces the exact solution mapping M(Y).
As shown in Figure 4B,z represents the expected value of extreme
points, with probabilities influenced by y and the noise ¢Z. Changes in
the probabilities of extreme points induce smooth variations in the
perturbed solution, making the gradient continuous.®>” For specific
scenarios, such as ensuring positivity in shortest path problems, re-
searchers have adjusted the noise distribution (e.g., exponential noise)
to maintain y positivity under perturbation, ensuring stability.>® In addi-
tion to statistical approximations, continuous functional fitting offers
another approach. Interpolating functions can ensure continuity in
optimization.*®

Computational cost and transferability in E2E

The methods discussed above focus on improving the feasibility and
efficiency of E2E gradient computation. However, despite various sim-
plifications, iterative optimization remains computationally intensive,
particularly for integer-constrained problems. For example, mixed-
integer linear programming (MILP), widely used in applications such
as determining the switching status of power generation units, poses
critical challenges. To address this, Bertsimas and Stellato proposed
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an online learning algorithm with a feedforward neural network to accel-
erate convergence,’ while Tang et al. used deep RL to adaptively select
cutting planes, improving solver performance and efficiency.*' These
advancements are pivotal for enabling E2E methods to tackle increas-
ingly complex optimization problems effectively. On the other hand,
improving training efficiency offers a complementary approach to
reducing computational costs. Techniques such as grid search, sto-
chastic search, and Bayesian optimization are commonly used to
identify optimal hyperparameters.*” Multi-fidelity optimization further
enhances efficiency by periodically pruning underperforming hyper-
parameter combinations based on performance metrics,** as demon-
strated in wind power dispatch scenarios.** These strategies stream-
line the training process, reducing trial-and-error and accelerating
convergence for E2E methods.

Transferability evaluates whether decisions made in one context can be
effectively applied to others. In SO, the predictive model is relatively
adaptable to related decision-making tasks when conceptual mis-
matches can be tolerated. However, E2E frameworks often sacrifice sta-
tistical accuracy to prioritize decision performance, resulting in incon-
sistent or nonsensical predictions.” Figure 5 illustrates this challenge.
The decision problem involves selecting the edge (1 or 2) with the
lowest cost, based on input feature x. In Figure 5A, the black line repre-
sents the optimal decision boundary, where x is less than (selects edge
2) or greater than (selects edge 1) than the threshold. Using SO (Fig-
ure 5B) leads to a mismatch between the orange line (suboptimal deci-
sion) and the black line. By contrast, E2E cases (Figures 5C and 5D)
align decisions with the optimal boundary but produce predictions
that deviate considerably due to overfitting to the decision task,
reducing interpretability and hindering transferability to similar tasks.
Despite attempts to improve transferability through hybrid losses
combining decision and prediction objectives,*® extending E2E
methods to broader domains remains a critical challenge.

DL

The core process of E2E involves transferring the gradient of the optimi-
zation problem to the prediction model p, for unbiased training. Howev-
er, methods such as implicit differentiation, surrogate losses, and ap-
proximations rely heavily on preserving the optimization structure,
which may not always be feasible in complex, real-world scenarios.
DL further integrates prediction and decision-making by bypassing
the requirement for optimization structure preservation. Instead, it
directly updates predictive model parameters based on the calculated
decision loss £, eliminating the need for optimization gradients.

RL

In DL, decision-making tasks are reformulated within a RL framework to
eliminate reliance on explicit optimization structures. The model py
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maps the input x to a decision z. The RL framework optimizes the ex-
pected cumulative reward J(6), defined as:

J(0) = E, {i y‘n(xt,zt)}
t=0

where t represents the time index in a Markov decision process (S, A,
T,r,v), which can also be formulated in implicit contexts, such as
solving combinatorial optimization problems.*® With xe S as the
state, ze A as the action, and 7' (xu.1|x;,2;) defining the system’s dy-
namics. The immediate reward r; reflects decision quality, such as
cost savings or reduced operational risks, while y e [0,1] is the dis-
count factor balancing immediate and future rewards. The goal of
RL-based DL is to find a policy m(z|x) parameterized by ¢ that max-
imizes J(0).

RL provides a flexible framework for integrating prediction and optimi-
zation in data-driven decision-making, treating them as interdependent
processes. By directly leveraging observed data, RL enables dynamic
and adaptive strategies tailored to complex systems.® For instance,
RL has been applied to error calibration in sequential day-ahead fore-
casts of demand load and wind power, improving downstream unit
commitment decisions.*” It also facilitates smart energy management
by optimizing battery and thermal storage systems based on house-
hold-level indicators.*® To enhance scalability and robustness,
advanced RL techniques have been introduced. Proximal policy optimi-
zation enhances stability by constraining policy updates through a clip-
ped surrogate objective, ensuring reliable convergence in high-dimen-
sional optimization.”” Deep deterministic policy gradient extends
policy gradients to continuous action spaces using an actor-critic
framework, enabling precise and efficient decision-making.”® These
methods highlight RL's ability to tackle complex, large-scale optimiza-
tion problems requiring stability and precision.

(Equation 11)

While RL-based DL provides a robust framework for integrating predic-
tion and decision-making, it faces key challenges. Balancing exploration
and exploitation remain difficult, as discovering new strategies often
comes at the expense of leveraging known policies. Sparse or delayed
rewards, such as in long-term energy management, further complicate
policy learning and convergence. In addition, scalability is a remarkable
issue, as training RL policies for large-scale systems demands substan-
tial computational resources, limiting their practical application. Prom-
ising solutions include hybrid approaches such as pretraining policies
with supervised or adopting distributed RL algorithms to enhance sam-
ple efficiency and scalability.

IL

IL, a key method in DL, focuses on directly fitting the relationship
between inputs x and decisions z using expert data collected during
early stages.®' Unlike RL, which balances exploration and exploitation
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Figure 5. Untransferability from prediction randomness in end-to-end learning (adapted from Elmachtoub and Grigas®)

through implicit optimization, IL bypasses optimization entirely,
focusing solely on accurately mapping prediction to decision-making
using expert demonstrations. IL is widely applied in real-world scenarios
such as urban autonomous driving, where crafting generalized decision-
making rules is challenging.®?

In addition, localized IL methods have been proposed as a compromise
to simulate gradient propagation in optimization processes. These
methods retain the predictive model while directly fitting the gradient
mapping, bypassing explicit optimization structures. Deep learning
models h5¢ are employed to approximate the decision loss using inputs
¥ and y,>® optimizing the following objective:
Hz (Equation 12)

This approach treats the mapping from input features to decision out-
comes as a "black box," allowing hy to approximate gradients. Conse-
quently, the optimization task for @ is simplified to h;(ps(x),y), replacing
the explicit gradient computation in Equation 4 with the internal
gradient propagation of h,. While this method improves computational
efficiency, its reliance on black box approximations introduces risks of
local optima during auxiliary model training. Scenario-specific adjust-
ments are often necessary to enhance robustness and ensure accurate
decision-making.

mini?lizeuhd,(ﬁy) — f(M(¥),y)

IL's direct approach to mapping inputs to decisions makes it a compu-
tationally efficient alternative, while its ability to sidestep explicit opti-
mization highlights its potential for streamlined decision-making in
complex systems. However, the use of black box structures, such as
neural networks, to approximate this mapping can lead to mismatches
with optimization constraints, resulting in infeasible or suboptimal solu-
tions and raising concerns about robustness and security. To address
these issues, adjustments can be made during training to align predic-
tions with decision constraints.®* For instance, regularization terms or
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additional constraint-aware training objectives can be introduced to
penalize infeasible predictions. In addition, strict architectural con-
straints can be embedded within the data-driven model to ensure
consistent production of valid solutions.®®

METHODS COMPARISON

To complement Table 1, we provide a structured comparison of SO, E2E,
and DL based on their alignment between prediction and decision-mak-
ing, training efficiency, and transparency, as shown in Table 2.

SO prioritizes predictive accuracy, typically minimizing statistical los-
ses such as MSE or MAE, which measure the norm-based discrepancy
between predicted values y and ground truth y. E2E, by contrast, aligns
prediction objectives with decision-making goals, using decision loss
as the optimization target to ensure that the predictive model directly
serves decision-making needs. In DL, the training loss is abstracted,
with reinforcement learning relying on predefined decision losses and
imitation learning focusing on replicating expert decision rules without
explicitly solving optimization problems.

Training efficiency largely hinges on the computational cost of gradient
calculations in the optimization process. SO is computationally efficient
as it optimizes only the predictive model, making it suitable for large-
scale problems. E2E, however, is resource-intensive, requiring the opti-
mization problem to be solved and gradients to be computed at each
epoch. DL's efficiency depends on the availability of expert training
data: with sufficient samples, training costs are primarily limited to pre-
dictive model updates, while insufficient data necessitate costly itera-
tive optimization.

SO retains high transparency, as the prediction and optimization pro-
cesses are distinct and interpretable. Although E2E sacrifices some
interpretability by embedding decision objectives into the prediction
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Table 2. Multidimensional comparison of different methodologies

Method Objective Consistency Efficiency Transparency

S0 Iy - vl - ; N

E2E L£(Z*,z") - +

DL L(z*,z*) or ||Z2" — z7| + O =

Method implementation contexts

SO best suited for scenarios where retraining predictive models is resource-intensive, such as in large-scale models or
diverse application contexts, where the system can tolerate some degree of decision suboptimality

E2E ideal for tasks that require high decision accuracy, especially where predictive models can be easily retrained and
closely aligned with decision-making objectives, ensuring optimal decision outcomes

DL most effective in scenarios with complex decision-making problems that lack explicit optimization structures,

where the primary goal is to accurately capture decision patterns directly from training data, as seen in
autonomous systems such as self-driving cars

training, which complicates the tracing of decision patterns, it still re-
tains the complete formulation of the optimization. DL, by bypassing
explicit optimization structures, often operates as a black box,
raising concerns about the reasoning and robustness of its
decisions.

Each method has distinct advantages depending on the application
context. SO is well suited for scenarios requiring scalable predictive
models with low computational overhead, such as meteorological fore-
casting or large-scale natural language models, although it may
compromise decision optimality. E2E is ideal for tasks demanding
high decision accuracy, where predictive models are explicitly trained
to optimize decision performance. DL, which abstracts optimization
structure in favor of pattern recognition from training data, is particu-
larly advantageous for complex, dynamic decision-making environ-
ments, such as autonomous driving.

APPLICATIONS IN DATA-DRIVEN OPTIMIZATION

Compared with traditional decision-making methods based on prior
knowledge and models, integrating data and predictive techniques
greatly enhances practical applications. For instance, by leveraging
the fusion of large-scale meteorological data and geographic informa-
tion, more accurate and efficient prediction of renewable energy can
be achieved. This enables smarter and more efficient distributed power
generation in microgrids through the use of multi-scale artificial intelli-
gence models. In addition, in asset-intensive industries, to address com-
mon management challenges faced by power generation companies
and grid operators, industry giants such as IBM and Oracle have devel-
oped big data-driven smart energy management products and ser-
vices.®® Overall, the advent of technologies such as data input and pre-
dictive analytics has injected new vitality into decision-making
applications, offering substantial improvements in industry practices
and standards.

This section highlights three mini case studies showcasing the versa-
tility of data-driven optimization methods across distinct domains,
including power grid scheduling, market operations, and broader opera-
tion management. These examples emphasize the cross-domain appli-
cability and effectiveness of various techniques in addressing complex
decision-making challenges.

Power grid scheduling

As one of the most complex systems in modern society, power grids
integrate cross-domain data, including meteorological, energy, equip-
ment, and network information. E2E has demonstrated significant ad-
vantages over SO in optimizing scheduling within such systems.

For instance, Wahdany et al.** developed an E2E framework for the
optimal power flow problem using implicit gradient techniques derived
from KKT conditions. Their method effectively reduced congestion and
overloads in power systems under high wind capacity by up to 8.5%
while decreasing error variance by 70%, remarkably outperforming SO.
Similarly, Zhou et al.® introduced an LSTM-based load forecasting
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model coupled with a two-stage E2E approach using MILP optimization.
Their multi-energy system optimization, which integrates electricity,
heat, and cooling loads, achieved a 0.40% reduction in operational costs
and annual savings of 124.66 kCNY.

Surrogate loss methods further enhance E2E computational efficiency
in large-scale systems. Sang et al.*® applied SPO+ to electricity price
arbitrage for energy storage systems. Despite higher RMSE and
MAPE (up to 10.24 times), their E2E approach reduced regret by
40.3% and improved daily economic benefits by $1.72 per MWh (approx-
imately 6.11%) compared with SO using a multilayer perceptron. Chen
et al.°® extended the applicability of SPO+ to MILP within a network-con-
strained unit commitment problem. By employing Lagrangian relaxation
to simplify constraints and enhance feature utilization efficiency, their
E2E framework achieved a remarkable 0.35% reduction in daily opera-
tion costs on an ISO-scale 5655-bus system.

Operations management

Operations management focuses on optimizing processes and deci-
sion-making to enhance efficiency and performance in manufacturing
and service sectors. Advances in information technology have revolu-
tionized operations management by enabling data-driven methods for
precise resource allocation, demand management, and cost optimiza-
tion, significantly improving operational effectiveness.*®

Chu et al.®° proposed an E2E framework for last-mile delivery services
that combines SPO+ with efficient mini-batching gradient techniques
and heuristic algorithms. Their approach integrates order allocation
and route optimization, achieving approximately a 5% reduction in
travel costs compared with SO. Tian et al.®' introduced an E2E
approach using SPO tree ensembles to optimize port state control
(PSC) inspections. By considering inspection, repair, and risk costs,
their method reduced a ship's total operating expenses by approxi-
mately 1% compared with SO and improved port logistics efficiency
by minimizing resources needed for PSC inspections and alleviating
port congestion.

As further advancements, Donti et al.®? developed an E2E method based
on stochastic optimization for inventory stock problems with uncertain
demand, enabling more informed decision-making with observable
feature data. Moreover, Qi et al.®® proposed a DL framework for multi-
period inventory replenishment under uncertain demand and vendor
lead times, where deep learning models directly output suggested
replenishment quantities from input features without intermediate pre-
dictions. Compared with SO, this approach reduced holding costs by
26.1% and average stockout costs by 51.7%, demonstrating substantial
improvements in operational efficiency.

Intelligent autonomous control

Intelligent autonomous control refers to systems capable of making
real-time decisions and performing tasks, such as autonomous driving,
drone control, and robotics, in dynamic and uncertain environments.
Due to the complexity of these tasks and the variability in operating con-
ditions, formulating explicit optimization objectives is often impractical.
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Figure 6. Overview of challenges in data-driven optimization

As aresult, DL offers an effective approach to adapt to changing condi-
tions and enhance data-driven decision-making.

Cao et al.** introduced a dynamic confidence-aware RL approach to
address uncertainty in the performance of self-driving vehicles under
extreme conditions. By leveraging the worst confidence value, this method
minimizes value function estimation errors, enabling stable improvement
to autonomous driving strategies. Kim et al. applied RL to train a drone
control system, integrating wing strain sensors, drone posture, and wind
data to optimize flight altitude. In indoor fight experiment, the system’s
robustness improved as training progressed.®®

IL further enhances autonomous decision-making by training on high-
quality expert samples.®® Behavior cloning (BC), inverse reinforcement
learning (IRL), and generative adversarial imitation learning (GAIL) align
an agent’s strategy with expert demonstrations, with BC matching
state-action trajectories, IRL improving generalization through reward
functions, and GAIL generating policies that closely follow the expert's,
ensuring stable and robust robotic control.®’

CHALLENGES

This section explores the challenges and potential solutions in applying
the data-driven optimization approaches discussed earlier. The insights
are organized into three key areas: data-centric methodology, optimiza-
tion methodology, and decision-making applications, as shown in Fig-
ure 6. By addressing these aspects, we aim to provide researchers
and practitioners with a deeper understanding of the critical consider-
ations and advancements needed to enhance the integration of predic-
tion and decision-making across domains.

Data-centric methodology

As artificial intelligence and related technologies continue to evolve,
data have become a critical resource driving innovation in Al systems.®®
This shift has given rise to data-centric Al, which focuses on optimizing
data to maximize its value in intelligent applications. Likewise, the qual-
ity and quantity of data play a pivotal role in determining the efficiency
and effectiveness of decision-making.

Data quality

With the continuous advancement of digital technologies, industries are
increasingly driving intelligent data collection and storage, leading to a
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surge in data volumes. For example, in energy systems, petabytes of
data are generated annually.®® However, this increase in data does
not necessarily lead to improved decision-making efficiency. In fact,
the role of data in tasks is not uniform; without proper preprocessing,
low-quality data can hinder training, obstruct the extraction of key pat-
terns, and ultimately reduce the effectiveness of applications.”® These
negative impacts not only reduce prediction accuracy but also diminish
decision-making efficiency, underscoring the importance of accurately
identifying data value—a key challenge for data-driven optimization.
While most data-driven techniques mentioned above rely on model-
based advancement, unlocking the potential of deterministic data
usage at the front end can further enhance decision-making
performance.”’

Current methods for evaluating or identifying high-quality data can be
broadly categorized into unsupervised and supervised approaches. Un-
supervised techniques include general data cleaning, consistency anal-
ysis,”> Shannon entropy,”® and outlier detection,”* which have been
effectively applied to multi-scale time series datasets, such as wind po-
wer prediction in day-ahead scheduling.”® These methods can effi-
ciently distinguish data computationally, but they also face a trade-off
with valuation accuracy. This is because static, one-size-fits-all evalua-
tion methods are insufficient for decision-focused needs, as the impor-
tance of the same data may vary under different conditions, such as
typical versus extreme climate scenarios. This underscores the need
for supervised methods. While most current supervised data valuation
approaches target prediction tasks,’® integrating decision-making in-
sights into data valuation remains an underexplored and highly prom-
ising avenue.

As actionable insights, to further enhance the efficiency of data-driven
optimization, we need more decision-focused data valuation methods.
Wang et al.”” proposed a general learning-based data valuation
method that calibrates the valuation distribution through dynamic
sampling and pre-defined data analytics validation. This approach
achieves an unbiased estimate that maximizes target value,
improving prediction accuracy by 7.69% in weather-coupled power
forecasting tasks, and provides a solid foundation for decision-
focused data valuation.”® Other methods, such as dynamic distribu-
tion-based approach,’® should also be extended to the cross-domain
decision-making field through the theoretical expansion of E2E
frameworks.
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Data quantity

In iterative training, insufficient data can lead to model overfitting, while
excessive data can substantially increase training costs and computa-
tional time. This challenge is particularly pronounced in data-driven de-
cision-making tasks involving E2E methods such as implicit differenti-
ation, where overly large datasets result in prohibitive computational
overheads, yet overly small datasets fail to capture the full spectrum
of critical decision scenarios. Achieving a balance by selecting an
appropriately scaled training dataset remains a critical and complex
challenge. Research has shown that a data volume two orders of magni-
tude smaller than the theoretical upper bound is often sufficient to
achieve high-accuracy decision-making in practice.?® This highlights
the potential for optimizing data scale to enhance computational effi-
ciency, suggesting that leveraging smaller data samples can still deliver
substantial decision-making benefits.

Techniques such as data augmentation and generative adversarial net-
works have been shown to extend training datasets and improve data
utility.2%®' However, these methods primarily focus on enriching text
and image data, and their applicability to data-driven decision-making
remains an area for further exploration. Other strategies, such as few-
shot learning,®” help generalize key information from limited datasets
and enhance predictive performance, offering potential solutions for
reducing redundant data usage in data-driven optimization.

Optimization methodology

In previous sections, we have focused on point forecasting among data-
driven optimization methods. This section further explores more com-
plex prediction to decision-making couplings in real-world applications,
along with the associated risks in parameter transmission.

Uncertainty modeling

As optimization theory and decision-making requirements evolve, the
modeling of decision-making in complex systems has become increas-
ingly sophisticated. Predictive analytics derived from industry data
often transcends deterministic frameworks due to inherent uncer-
tainties in forecasting unknown variables. This has led to the adoption
of probabilistic and statistical optimization techniques, such as expec-
tation-based and min-max approaches, to address these complexities.
For instance, in power systems, the characterization of renewable
energy sources such as wind and solar has shifted from deterministic
outputs to stochastic distributions or non-parametric, feature-driven
probabilistic models, enabling a more comprehensive representation
of random variability. This paradigm shift necessitates advancements
in stochastic and robust optimization frameworks, driving the expan-
sion of data-driven optimization methodologies to better accommodate
the uncertainties inherent in real-world systems. Donti et al.®? pioneered
the use of expectation-based implicit differentiation in E2E frameworks,
effectively addressing uncertain problems such as price forecasting
and battery storage optimization.

Moreover, uncertainty modeling has evolved to include more flexible ap-
proaches, such as chance constraints, which transform deterministic
constraints into probabilistic ones, ensuring they are met with a speci-
fied probability under a given distribution.®® These methods have been
applied to safety-critical issues, such as renewable energy grid dis-
patching,®* but challenges remain in the theoretical formulation of
E2E gradient propagation. In addition, robust optimization techniques
use uncertainty to guide decision-making and mitigate worst-case sce-
narios,®® with successful applications in power system problems such
as unit commitment.®® Moreover, approaches such as distributionally
robust optimization'® have matured and been applied in multi-source
operations.®” In summary, data-driven optimization methods must
further develop their theoretical foundations for uncertainty modeling
and gradient computation to meet the growing demands of high-dimen-
sional optimization in both academia and industry.

Solution feasibility

Beyond theoretically minimizing decision-making suboptimality
through advanced E2E methods, it is crucial to ensure that decisions
based on predicted parameters remain feasible when applied to actual
parameters. This requires maintaining continuity in the training process

10 Nexus 2, 100057, March 18, 2025

Perspective

to avoid the applied loss (Equation 3) leading to infeasible or meaning-
less solutions. However, the feasible region defined by predicted param-
eters often diverges from the true feasible region. For instance, renew-
able energy output predictions inherently form balance constraints, and
misalignment between the feasible regions in the predictive and actual
operational environments can potentially threaten the efficiency of un-
biased power management training.

To mitigate the risks to system security, researchers have explored stra-
tegies such as imposing high penalty costs for violating safety con-
straints®® and incorporating these constraints into the objective func-
tion as risk measures.®® In addition, post-hoc corrections, where
constraint terms are adjusted through parameter iterations, have been
used to ensure feasibility before minimizing decision loss.®? Other tech-
niques, such as projection-based mapping to a feasible region, have
also been employed. However, more comprehensive theoretical frame-
works to ensure feasibility within a closed-loop training process are still
under development.

Decision-making application

Compared with forecasting problems, decision-making is more con-
strained by the specific nature of the optimization content, which intro-
duces potential risks in practical applications. This section discusses
two critical challenges: interpretability—how well the decision can be
understood and explained, and scalability—how to adapt to changing
environments and non-stationary data.

Interpretability

Interpretability is essential for enabling decision-makers to trust and act
confidently on predictions by understanding the underlying factors and
rationale. In the context of black box prediction models (e.g., machine
learning, deep learning), interpreting the fitting logic can provide valu-
able insights into better predictions, prediction-to-decision processes,
and direct decision-making for frameworks such as SO, E2E, and DL.
For boosting tree models, feature importance metrics, based on training
process splits and the Gini index, quantify the contribution of different
input features to the prediction model.°® Other interpretability tech-
niques, such as local interpretable model-agnostic explanations,’’
which focuses on learning a locally interpretable classification model,
and integrated gradients,’” which ensures feature sensitivity and imple-
mentation invariance, offer deeper insights into individual feature con-
tributions. These methods enable decision-makers to better understand
how each variable influences predictions training in complex models.

In addition, Shapley value, a method for allocating contributions in coop-
erative game theory, has been applied to interpret input feature contri-
butions.?® Shapley additive explanations®* decomposes model outputs
based on feature contributions and analyzes feature interactions at
multiple scales. This has been particularly useful in domains such as
healthcare, providing patient-physician decision analysis.”®> Further-
more, physics-informed neural networks enhance interpretability by
integrating neural networks with physical laws, ensuring that predic-
tions align with domain-specific principles, with applications in energy
systems.’® These approaches not only increase interpretability but
also improve model reliability by aligning learned patterns with estab-
lished domain knowledge.

Despite these advances, applying interpretability to decision-making re-
mains a critical challenge. The causal logic linking data to decisions re-
quires further clarification to help decision-makers understand the fac-
tors influencing outcomes and potential decision losses within the
predictive and optimization framework. This necessitates extending
interpretability frameworks traditionally applied in ML or DL to subse-
quent decision-making processes. Moreover, for theoretically unbiased
methods such as E2E, suboptimal predictions that sacrifice local statis-
tical optimality must provide deeper insights and explanations aligned
with decision-level optimality. Such understanding must be tailored to
the specific optimization context, where interpretability facilitates the
intelligent utilization of data and model training.

Scalability

Decision scalability in data-driven decision-making refers to a model's
ability to adapt to dynamic environments and evolving data
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distributions, a challenge particularly pronounced in fields such as
finance and environmental monitoring. In such contexts, the underlying
data distributions shift over time, rendering traditional models that as-
sume stationarity less effective. To address this, prediction-based deci-
sion frameworks must adjust dynamically during the training process to
accommodate these changes. This adaptability represents a key chal-
lenge for data-driven optimization in dynamic environments and is
essential for unlocking its sustained applicability across diverse indus-
tries. One effective approach to address this challenge is transfer
learning, which allows models to transfer knowledge from related tasks
or domains, enabling adaptation to new conditions without retraining
from scratch.°” This can include parameter inheritance or structural
fine-tuning to better capture the nuances of new environments. In addi-
tion, model-agnostic meta-learning algorithms optimize representa-
tions that facilitate rapid adaptation to novel tasks, offering a flexible
framework for evolving environments.® These methods enable models
to generalize across changing contexts, ensuring scalable decision-
making.

For non-stationary data, where data patterns continuously shift over
time, online learning provides a key strategy. By enabling models to
update continuously as new data become available, online learning en-
sures models remain relevant and effective even in the face of unpre-
dictable changes. This approach maximizes decision-making accuracy
by refining the model based on previous learning tasks and new obser-
vations, maintaining relevance in fast-changing scenarios.’® Further-
more, few-shot learning can accelerate adaptation to new tasks
with minimal labeled data, a particularly useful tool in environments
where data are sparse or expensive to acquire.'’® When combined
with robust optimization techniques, these strategies enhance the
scalability of data-driven decision-making systems, ensuring they
remain accurate and efficient, even under uncertainty and shifting
data distributions.

CONCLUSION AND DISCUSSION

As digital technologies continue to advance and decision-making de-
mands grow increasingly specialized and diverse, the need for more effi-
cient solution algorithms has driven the rapid evolution of data-driven
optimization. This review provides a comprehensive analysis of the
key methodologies in this field, including theoretical frameworks,
comparative assessments, and practical applications. It highlights crit-
ical challenges and outlines key areas for future research, offering valu-
able insights for both academic researchers and industry practitioners.
By identifying emerging trends and unresolved issues, this review
serves as a crucial resource for guiding future innovations in data-
driven optimization.

This review provides a systematic examination of three key ap-
proaches to data-driven optimization, with a focus on the integration
of prediction and decision-making. SO follows a two-stage framework
that trains predictive models to optimize for norm-based accuracy,
achieving rapid convergence with output parameters for subsequent
decision-making. However, this approach is subject to the theoretical
risk of suboptimality, influenced by the mismatch of the optimization
objective. E2E addresses this limitation by incorporating decision
loss into the training of predictive models, ensuring consistency
between predictions and decisions. To tackle challenges in gradient
transmission through the optimization structure, implicit differentia-
tion employs Lagrangian functions to compute the Jacobian matrix,
surrogate loss methods simplify computation by optimizing well-
behaved objectives, and approximation methods estimate gradients
using expectation-based techniques. However, these methods need
to consider computational cost and transferability during training.
DL focuses on directly generating decision outputs from predictive
models, making it particularly suited for scenarios with complex or
implicit optimization structures, as exemplified in reinforcement
and imitation learning. This review offers an in-depth comparative
analysis of these approaches, exploring their theoretical foundations,
structural characteristics, and practical applications. Case studies in
power grid scheduling, operations management, and intelligent
autonomous control illustrate the real-world relevance of these
methods.
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Finally, we identify key challenges in data-driven optimization and pro-
pose directions for future research. For data-centric approaches, future
work should focus on enhancing both data quality and quantity,
exploring unsupervised valuation methods such as entropy-based and
outlier detection techniques, as well as learning-based methods with
adaptive strategy. In addition, data quantity considerations should
encompass usage necessity, including strategies such as data
augmentation and few-shot learning. From an optimization modeling
perspective, incorporating more realistic uncertainty representations,
such as stochastic and robust optimization, could better address the
needs of complex systems, especially when driven by uncertainty distri-
butions and statistical characteristics. Moreover, potential interference
between predicted and true values could lead to decision infeasibility in
ground truth validation, necessitating further work on ensuring training
coherence. Finally, from an application perspective, dissecting predic-
tive models trained for varying levels of decision-making penetration
can enhance decision interpretability. Given the challenges posed by
changing environments and non-stationary data streams, future
research should also explore methods such as transfer learning and
meta-learning to maintain the practical efficiency of data-driven
optimization.
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