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Abstract—In the rapidly evolving fields of energy storage
and big data, data-driven models for estimating battery states
have become increasingly prevalent. However, the accuracy of
these models is greatly affected by the quality of feature data
used in training, especially in real-world lithium-ion battery
scenarios where data diversity and quality significantly vary
from laboratory settings. Our paper introduces a feature val-
uation framework tailored to data-driven predictions, focusing
on evaluating the averaged marginal improvement of features
on the model’s performance. Experimental findings demonstrate
a prediction error of 4.07% with only Battery and Power
System, HVAC System, and Temperature Control and Monitoring
features, yielding a 0.8% and 2.2% accuracy enhancement over
the full dataset and BPS alone, respectively.

Index Terms—electric vehicle, feature valuation, lithium-ion
battery, shapley value, state estimation

I. INTRODUCTION

The advent of electric vehicles and clean energy has pre-
cipitated a fundamental transformation in carbon emissions,
marking a revolutionary shift in contemporary energy systems
[1]. Lithium-ion batteries, as a vital energy storage technology,
are undergoing rapid development due to the increasing popu-
larity of electric vehicles [2]. Nevertheless, in recent years, the
significance of managing battery states has been underscored
by a gradual uptick in incidents pertaining to battery depletion
and, more critically, battery safety [3]. Consequently, effective
battery management hinges on the reliable identification of
the battery’s current state, facilitating interventions that are
crucial for maintaining safety and efficiency. Among various
factors, precise estimation of the State of Charge (SoC) of a
lithium-ion battery is paramount for ensuring safe operation,
prolonging its lifespan, and optimizing its overall performance
[4].

However, predicting the SoC of batteries presents a signifi-
cant challenge due to the highly nonlinear relationships among
internal physical quantities and the limited observability of the
battery’s internal state. While external characteristics of the
cell, such as voltage and current, yield important data, they do
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not consistently reflect the SoC. For example, the cell voltage
primarily correlates with the lithium-ion concentration at the
surface of the electrodes, while the SoC is contingent upon
the average lithium-ion concentration within the electrodes [5].
Furthermore, the accuracy of SoC estimations is impacted by
its complex responsiveness to environmental factors, particu-
larly temperature variations [6].

Mechanism-based approaches to battery modeling predom-
inantly encompass two main categories: physics-based elec-
trochemical models and electrical equivalent circuit models.
Electrochemical models, including the single-particle model
and pseudo-two-dimensional model, derive battery state esti-
mations through differential equations that delineate electro-
chemical reactions, ion diffusion, and electrolyte conductivity
[7], [8]. Nonetheless, the precision of these models is criti-
cally contingent upon the accurate determination of internal
parameters such as lithium-ion diffusion rates, electrode re-
action kinetics, and electrolyte conductivity. Given that these
parameters are frequently unknown and require optimization-
based estimation, potential inaccuracies in parameter determi-
nation inherently constrain the fidelity of physics-based elec-
trochemical models in practical scenarios [9]. Circuit models
abstract the physical representation of battery internals using
electrical components [10]. However, these approaches do not
circumvent the necessity of estimating internal battery param-
eters like internal resistance and capacitance. Furthermore, the
variability of these parameters over the battery’s lifespan poses
additional challenges to the predictability and accuracy of such
models.

Given these challenges, employing data-driven methods for
SoC estimation emerges as a potentially effective approach. In
contrast, these approaches utilize comprehensive datasets from
lithium-ion battery scenarios and employ machine learning
algorithms, treating the battery as a ’black box’ to identify
intricate correlations and patterns among features, thereby
markedly enhancing the precision of battery state predictions.
Contrasted with mechanism-based approaches, data-driven
methods excel in processing large, complex datasets, extract-
ing meaningful insights without the need for detailed physical
modelling, thereby offering efficiency in model development
and updating. Utilizing a vast array of real-world electric
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vehicle operating data, including SoC, ambient temperature,
and driving data, researchers develop a lithium-ion battery
charging capacity prediction model based on the tree-based
algorithm [11]. The model’s predictions, integrated with a fault
determination mechanism, are effectively validated against
the charging records of actual electric vehicles. Furthermore,
researchers employed dropout techniques to build robust neu-
ral networks, enabling them to discern the laws of SoC
prediction from various perspectives, encompassing recorded
SoC and battery data, vehicle driving information, as well as
environmental details [12].

Although data-driven methods excel in addressing nonlin-
ear issues and internal parameters estimation challenges in
lithium-ion batteries, their performance is contingent upon the
quality of the training dataset [9]. Consequently, the challenge
of effectively evaluating and selecting precise feature-based
data to enhance accuracy of state estimation represents a
burgeoning frontier in the realm of data-driven methodolo-
gies. Several scholars have evaluated data sample quality and
introduced a valuation framework across diverse data scenarios
[13]. The effectiveness of selecting high-quality data has
been substantiated, illustrating that assigning greater weight to
premium datasets considerably reduces prediction inaccuracies
[14]. Nonetheless, these investigations overlook the crucial
aspect of data feature selection for battery state prediction,
an essential consideration in unraveling the predictive model’s
”black box” to identify critical predictive features. Researchers
extract six statistical features from the voltage relaxation
curve for predicting battery capacity and discover that the
optimal estimation results are achieved by utilizing only three
metrics—variance, skewness, and maximum as inputs [15].
This suggests that an increase in data features does not always
lead to improved performance in assessment. However, the
diversity and richness of data from real electric vehicles,
including factors such as weather, traffic conditions, and
driving behavior, exert both deterministic and random effects
on the batteries, extending beyond the scope of laboratory
data [12]. The significance of these features for lithium-
ion batteries state prediction must be accurately evaluated
to facilitate improvements in the data-driven methodology,
thereby realizing enhanced economic and safety benefits.

Crucially, the data continuously collected by sensors in
diverse electric vehicles constitutes significant assets. Yet,
the research community has not established a comprehensive
framework for effectively appraising the value of these data,
especially regarding their contribution to the precise assess-
ment of the actual state of lithium-ion batteries. Identifying
and differentiating high-value from low-value features in this
realm is still an area that remains uncharted. To address it,
this study makes the following two contributions:

1) Focusing on the SoC prediction of lithium-ion batteries
in electric vehicles, we propose a feature valuation framework
that assesses both the impact of batteries and their associated
environmental and on-vehicle data features based on data-
driven method.

2) Fairness-based feature valuation is employed in a prac-

tical electric vehicle travel data, and the interpretability of
evaluation hierarchy is rigorously affirmed through addition
experiments.

The flowchart detailing the feature evaluation process for
a specific electric vehicle is presented in Fig. 1. And steps
Feature Collection and Model Selection are thoroughly de-
tailed in Section II, whereas the Feature Valuation process is
comprehensively addressed in Section III
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Fig. 1. Features Valuation based on SoC Prediction.

II. DATA-DRIVEN STATE OF CHARGE PREDICTION

The dataset employ in our study encompasses 72 real
driving trips using a BMW i3 (60 Ah), comprising data on
the environment, vehicle, battery, and heating circuit [16]. We
transform the data from each trip into panel data at 10-second
intervals.

A. Characterization of Input Features

For the purpose of SoC prediction, we identified 42 candi-
date features. It is important to acknowledge that our feature
selection process is inherently constrained by the available
dataset. Consequently, we have categorized these features
according to their intrinsic characteristics to facilitate a more
coherent understanding and to enhance the interpretability of
the feature valuation process. These features were system-
atically classified into eight distinct categories based on the
originating sensors, as detailed below:

o Vehicle Motion Characteristics (VMC): Velocity, Ele-
vation, Longitudinal Acceleration.

e Driving Inputn (DI): Throttle, Regenerative Braking
Signal.

« Electric Motor Characteristics (EMC): Motor Torque.

o Battery and Power System (BPS): Battery Voltage,
Battery Current, Battery Temperature, max. Battery Tem-
perature.

« HVAC System (HVAC): Heating Power CAN, Heating
Power LIN, Requested Heating Power, AirCon Power,
Heater Signal, Heater Voltage, Heater Current.
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o Temperature Control and Monitoring (TCM): Am-
bient Temperature, Coolant Temperature Heatercore, Re-
quested Coolant Temperature, Coolant Temperature Inlet,
Heat Exchanger Temperature, Cabin Temperature Sensor,
Ambient Temperature Sensor.

o Cooling System (CS): Coolant Volume Flow, Temper-
ature Coolant Heater Inlet, Temperature Coolant Heater
Outlet, Temperature Heat Exchanger Outlet.

« Interior Environmental Temperature (IET): Temper-
ature Defrost lateral left, Temperature Defrost lateral
right, Temperature Defrost central, Temperature Defrost
central left, Temperature Defrost central right, Tempera-
ture Footweel Driver, Temperature Footweel Co-Driver,
Temperature Feetvent Co-Driver, Temperature Feetvent
Driver, Temperature Head Co-Driver, Temperature Head
Driver, Temperature Vent central right, Temperature Vent
central left, Temperature Vent right.

Our subsequent valuations of features in automotive lithium-
ion batteries are predicated on this categorization.

B. Data-driven Model Candidates

Given that the primary contribution of our article is the
introduction of a framework for feature valuation, we con-
centrate on the variations in SoC prediction resulting from
the utilization of different features. Therefore, in the process
of model selection, we opt for learning-based models that
demonstrate strong generalization capabilities and have estab-
lished maturity in application as our candidates. In the realm
of data-driven battery condition assessment methods, eXtreme
Gradient Boosting (XGB), Support Vector Machine (SVM),
and Neural Networks (NN) have shown promising results [15],
[17], [18]. In this study, we additionally utilize Elastic Net
(EN), K-Nearest Neighbors (KNN), Random Forest (RF), and
LightGBM (LGBM) as further candidate prediction models.
These approaches is aimed at mining numerical laws from the
large-scale and diverse datasets collected by electric vehicles,
employing methodologies that span linear, unsupervised, inte-
grated, and efficient learning perspectives.

As an amalgamation of Lasso and Ridge regression char-
acteristics, EN is particularly apt for handling data with high-
dimensional features and strong inter-feature correlations [19].
The methodology for its parameter 3 estimation is delineated
as follows:

arg;nin (lly = XBI1* + A2IB11” + Ml Bl1) (D

The model incorporates the residual sum of squares, the
L2 regularization term from Ridge regression ()\2), and the
L1 regularization term from Lasso (A;). These components
collectively reduce over-fitting, with Lasso’s term promoting
sparsity in the regression coefficients. Besides, KNN predicts
based on the proximity of data points to its nearest neighbors,
effectively adapting to nonlinear battery-related data with
complex patterns. In addition, RF enhances prediction accu-
racy and robustness by constructing multiple decision trees
and aggregating their outcomes. This method is especially
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effective with large-scale, multivariate data, bolstering the
model’s resilience to outliers and noise [20]. XGB and LGBM
optimizes its objective function £ as gradient boosting tree:

£O =S (g H )+ @
i=1

which combines a loss function [ and a regularization term
2, enabling the model to enhance predictive accuracy while
also controlling model complexity. LGBM stands out by its
selective data focus and streamlined processing, enhancing
efficiency in both training speed and memory usage for large-
scale, high-dimensional datasets such as battery state predic-
tion in electric vehicles [21]. Our NN model employs a multi-
layer perceptron, which is particularly advantageous for SoC
predictions due to its ability to capture complex, non-linear
relationships, thereby enhancing accuracy and robustness..

In our experimental setup, diverse features are utilized as
inputs with SoC as the output for model training. Mean
Absolute Error (MAE) is selected to measure the accuracy
of SoC prediction, and the expression is as follows:

1 n
MAE = — » |yi — ¥ 3)

I
We adopt a 5-fold cross-validation method to assess predic-
tive accuracy and employ grid search for hyper-parameter
optimization across models. Based on MAE, we evaluate
and select the most suitable model for subsequent feature
valuation, ensuring optimal predictive efficacy.

III. FEATURE EVALUATION FRAMEWORK

The variety of data-driven models used in assessing the state
of lithium-ion battery vehicles presents challenges to exist-
ing model-based feature importance algorithms. For instance,
while advanced boosting tree models like XGB and LGBM
have proven technique on evaluating features based on their
frequency in decision tree splits and their contribution to model
performance, the most suitable model might belong to a differ-
ent class of learning algorithms [21], [22]. In response to this,
our study proposes a comprehensive and generalized feature
valuation framework, designed to accommodate multiple data-
driven model types by using precision-oriented method.

Let X = {X1, Xo,..., X, } represent the set of time series
datasets collected from n sensors in an electric vehicle, where
each X, denotes a distinct feature (set) with corresponding
data. Define the panel data domain P contains subsets of the
feature set X. If considering all possible feature combinations,
P can be defined as the power set of X, i.e., P = P(X). The
value function ¢ is defined as ¢ : P — R, mapping each
feature subset (element of P ) to a real number, indicative of
the value or performance of that feature combination. In the
SoC prediction, value is conceptualized as the performance of
the featured dataset derived from cross-validation, where we
employ the negative MAE as metric. As shown in III of Fig.
1, our key objective is to interpret this mapping relationship
on ¢, thereby elucidating the value of each feature set X; in
the prediction process.
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A. Leave-One-Out Method

Leave-One-Out (LOO) refers to determining the contri-
bution of a feature’s presence or absence to the predictive
performance of the remaining feature subset. This approach
highlights the marginal utility of a quantitative feature across
the entire set, as expressed below:

LOO (Xi) = ¢ (X) — o(X\{Xi}) S

where X\ {X;} represents the complement of X; in the
set. This difference in prediction performance, denoted as
LOO (X;), indicates the impact of feature X; on the overall
model performance. A significant feature value calculated by
LOO suggests that X; substantially influences the model’s
predictive accuracy trained by the entire set X.

B. Shapley Value Method

Upon noting that LOO assesses marginal improvement of
the performance in data-driven model across the complete
feature set, we aim to broaden this approach by including every
feature subsets as a baseline. The concept of Shapley value,
derived from game theory, is applied for benefit allocation,
computing the weighted average utility of a player in relation
to all subsets of its exclusion. When this concept is adapted
for feature valuation, the formula is as follows:

> 15]1(n —nI'SI — D s su ) - 6(9)
SCX\(X:} ' )

Here, ¥ (X;) is the Shapley value of feature X;, S is a
subset of features excluding X;, n is the total number of
features, and ¢ (S U {X;}) — ¢(S) represents the incremental
value of adding feature X; to the subset S. Through the
weighted summation of averaging coefficients, the average
marginal enhancement attributable to a single feature across all
subsets is ascertainable. Theoretically, the efficiency property
of this method dictates that the aggregate of the values for all
features should equal the total value derived from employing
all features, minus the value attained when no features are
used. That is expressed as:

U (X;) =

D W (X)) = 6(X) — (D) 6)
i=1

This ensures that the collective contributions of all features
are deterministically quantified and equitably allocated among
them, thereby demonstrating a level of referential integrity and
fairness. Consequently, the valuation of features is entirely
derived from the enhancements realized through the data-
driven model. Therefore, the meaningfulness of comparing
high and low values across different features is enhanced due
to the limitations imposed on the total number of feature
values, offering advantages in our feature valuation.

C. Insights for Revenue Sharing

In the realm of energy big data, synergies among various
interrelated industries facilitate the ongoing integration of
data elements, optimizing the modeling of energy systems.

Similarly, in the context of electric vehicles, when data col-
lection devices sourced from various vendors converge, they
collectively contribute to a more precise estimation of the
battery state. More precise predictions of the SoC enable better
and more accurate battery capacity and health management,
which in turn can significantly reduce the costs associated with
power usage and battery maintenance. Should more precise
predictions of battery state result in heightened deterministic
gains, the sharing strategy of these gains can be effectively
guided by feature valuation. If data for each feature set X is
sourced from sensors supplied by different vendors ¢, then the
revenue distribution for each vendor r; can be expressed as

follows:
w;

-
Zj:i wj
where G is the empirical function delineating the benefits
derived from data in accurately predicting battery condition,

and w; is regarded as a coefficient associated with the feature
value, taking into account realistic allocations.

i = *(G(X) =G (D)

(7

IV. RESULTS
A. Model Selection for SoC Prediction

We initially implement a grid search coupled with cross-
validation to identify the model’s optimal hyperparameters.
For EN, the regularization scale is set between 0.001 to 10.0
with an [1 ratio of 0.2 to 0.8; the regularization coefficient
for SVM ranges from 1 to 100; the KNN model’s k-value
is chosen between 3 to 7; for the boosting tree model (XGB
& LGBM), the estimator and max depth are set within the
ranges of 100 to 800 and 3 to 10, respectively. The NN
is configured as a fully connected network with 2-4 hidden
layers, each containing 100-150 nodes, and includes the option
to select either the ReLU or tanh activation function. The best
predictions MAE of the final optimized parameters are detailed
in table L.

TABLE I
MAE ACROSS DIFFERENT DATA-DRIVEN MODELS
Model MAE (%)
EN 5.28
SVM 5.17
KNN 14.44
RF 7.39
XGB 5.70
LGBM 5.44
NN 4.87

The optimal model is neural network (NN), characterized
by an activation function setting of ReLU and the hidden layer
sizes of (150, 150, 150), achieved the lowest MAE among all
models at 4.87%. Neural networks are frequently viewed as
‘black boxes’, largely attributed to their intricate, multi-level
nonlinear operations and a multitude of internal parameters.
This complexity hinders the comprehension of their capacity
for precise SoC prediction through the analysis of extensive
feature data. Such opacity further emphasizes the need for our
forthcoming analysis on the importance of features.
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B. Feature Valuation for better SoC Prediction

Building on the feature classification methodology outlined
in II-A, we employ eight feature sets (n=8) as the unit for
feature valuation. We use negative MAE as the cross-validation
metric to calculate the predictive value in a feature-based
sampling. Recognizing the inherent randomness in neural
network training, we conducted the experiment eight times
to bolster its reliability. The amalgamated outcomes of these
iterations are depicted in Fig. 2, where they are differentiated
based on the two methods employed: LOO and Shapley Value
(SV).

Our analysis reveals that the feature value distribution
calculated by SV is more polarized compared to LOO, as
indicated by the larger absolute values at both extremes. For
battery-related feature sets BPS, both methods recognize their
predictive importance for SoC, with SV attributing a higher
degree of importance as 10.3% than LOO as 8.2%. However,
there are notable discrepancies in the value rankings for other
features between the two methods. For instance, in the case
of VMC, the feature set associated with vehicle driving, LOO
assigns a marginally higher value (1.5%) than SV (0.6%);
conversely, the importance of HVAC is significantly more
pronounced in SV than LOO, ranking second only to BPS
in SV. Other features such as DI, EMS, and CS show negli-
gible absolute value (< 0.2%) under both the LOO and SV
computational frameworks, leading us to consider these sets
collectively in subsequent analyses.

Given that both LOO and SV are predicated on marginal
utility, the emergence of negative values for the two feature
sets describing temperature (IET & TCM). Among these, IET,
which prioritize the comfort of vehicle occupants by focusing
on cabin temperatures, shows are consistently identified as
potential disruptors (-0.3%) in accurately predicting SoC.
Moreover, for features emphasizing the overall monitoring and
control of operational temperatures, particularly engine cool-
ing and ambient conditions, the TCM feature in SV exhibited
a markedly negative impact on battery state prediction. This
effect, as quantified by SV as —1.3%, was significantly more
pronounced than the relatively minor impact observed in LOO
as —0.1%.

Furthermore, our findings indicate that SV exhibits con-
siderably less fluctuation than LOO in feature valuation,
suggesting a lower susceptibility to the inherent randomness of
the neural network training and testing. This robustness in SV
stems from its averaging computation process, lending greater
consistency and credibility to its results compared to LOO.

C. Validation through Feature Filtering

Based on the stability analysis of the results, we rank
the features in descending order according to their Shapley
values. Starting with an empty set, features are incrementally
added in this order to calculate the predictive utility for the
SoC. To minimize the impact of less influential feature sets
on the regularity of the results, we grouped three feature
sets with negligible values (DI/EMC/CS) into one category.
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Consequently, a total of six groups are utilized in the feature
addition experiments, with the outcomes presented in Fig. 3.
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Fig. 3. Variations in MAE with the Addition of Feature Groups

We observe that employing only the battery-related feature
set BPS limits the SoC prediction error to 6.24%. The accuracy
further improves with the inclusion of HVAC and VMC
features, dropping to a minimum error of 4.07% once both
are added. However, integrating feature sets with minimal
contributions led to the introduction of redundant features,
resulting in a slight increase in prediction error, averaging at
4.23%. The addition of IET and TMC features, which hold
negative feature values, adversely impacted the training and
decision-making processes of the prediction model, ultimately
elevating the error to that of the full data set’s prediction
performance, increase MAE in 0.8% compared to the lowest.

After arranging the LOO-computed feature values in de-
scending order and identifying the point of optimal prediction
performance, we compare the MAE at various stages: with
no features added which using only the label mean, employ-
ing only battery-related BPS features, and with all features
included. Our analysis reveals that SV (4.07%) outperforms
LOO (4.22%) in identifying the optimal feature subset, in-
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TABLE 11
MAE IN DIFFERENT FEATURE VALUATION METHOD
Method MAE (%)
no feature 18.61
only BPS 6.24
all features 4.88
LOO (lowest) 4.22
SV (lowest) 4.07

dicating that former hase a more accurate assessment of the
value of features. In addition, a more efficient selection of
the appropriate data subset for training can markedly enhance
SoC prediction performance. As a result, in electric vehicle
driving scenarios, incorporating data from the HVAC system
and vehicle driving records alongside the Battery and Power
System data yields the best SoC prediction, averaging a
meaningful 2.2% improvement in accuracy over using only
battery data. This strategic feature management — the more
precise utilization of feature data — resulted in a 0.80%
increase in predictive utility.

V. CONCLUSION

In this study, we have delineated the features pertinent to
predicting the State of Charge (SoC) of lithium-ion batteries
in electric vehicles. Taking into account data collected from 8
major categories of electric vehicle features from actual driv-
ing trips, we observe that the Shapley Value (SV) calculation
yielded superior differentiation and stability in feature values
than Leave-One-Out (LOO). The significance of the battery-
related feature BPS is consistently recognized. Other features
such as HVAC is accorded higher importance in SV, whereas
the LOO calculation indicated a greater contribution from
the vehicle power feature VMC. Additionally, both methods
concurr on the negligible contribution of DI, EMC, and
CS features. Concerning the negative impact of temperature-
related features, SV more prominently underscored the TCM’s
potential to disrupt accurate SoC prediction, compared to the
similar evaluations of the IET feature in both SV and LOO.

Through experiments involving the addition of features
based on value-based ordering, we discover that the SV
approach achieves the lowest Mean Absolute Error (MAE)
in feature management than LOO. Specifically, a prediction
error of 4.07% was attained using only the BPS, HVAC, and
TMC features, representing a 0.8% and 2.2% improvement
in prediction accuracy compared to using the full dataset and
employing only the BPS feature, respectively. This highlights
the significance of feature management in estimating the state
of lithium-ion batteries, and offers crucial insights into the
roles of HVAC and vehicle driving state in SoC evaluation,
which also sheds light on the negative impact of temperature
variables on the training of data-driven models.

Certain research areas for further exploration are: 1. Deeper
analysis of the interplay between feature values in the context
of battery principles; 2. Adjustment of the Shapley value for
diverse data scenarios, including scenarios with high feature
correlation or intricate model training.
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